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One of the most appealing aspects of watching sport is encountering world-class athletes

compete against each other. While these performances create enthralling experiences, their

exclusivity unintentionally creates some pitfalls when robustly analysing their relative perfor-

mances and changes to their performance. With the increasing professionalism of sport and

increasing availability of wearable technologies, Sports Scientists can gather a prolific amount

of data about athletes’ physical, physiological, psychological, and tactical state.

This thesis aims to expand the statistical toolkit of Sports Scientists by providing novel research

using statistical techniques that are underutilised by the sports science community to provide

real-world examples of how correct statistical methodologies and principles can help overcome

commonly seen pitfalls in sports science data sets. While each of these pitfalls are not unique

to sports science, the combination of multiple pitfalls can hinder performing robust statistical

analyses. Sports Scientists are required to utilise statistical methods that can account for

an individual’s baseline level before an intervention, especially when there are imbalanced

amounts of data for each athlete. Additionally, with the continual development of testing

batteries and methodologies when understanding an athlete’s profile, it is easy to simply take

the players that are exceptional in each attribute; however, more consideration is required to

identify ‘all-rounder’ players, that perform well in numerous testing batteries without being

exceptional in any attribute. Furthermore, given these athletes are at, or close to, the peak

of their ability, the levels of improvement required for athletes are substantially lower than

that which would be deemed successful at a general population. Similarly, given there is only

a limited number of athletes compete at the highest level of competition in their given sport,
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consideration needs to be had for statistical methods that can accommodate for limited sample

sizes.

This thesis calls for an increased adoption of mixed models for data sets in which there are

repeated measures of athletes and it is necessary to account for the athlete’s inherent baseline

in an imbalanced data set. This thesis presents Pareto frontiers as a statistical principle of

identifying the ‘extreme’ athletes that excel in multiple attributes of interest, even if they may

not be exceptional in any single attribute. Finally, this thesis highlights Bayesian inference

as a statistical framework, in which prior subject matter expert knowledge of what the data

typically seen can be incorporated into the statistical model to identify beneficial interventions

more easily when dealing with small effect sizes and small sample sizes.

The first three studies provide methodological overviews of these three statistical aspects (i.e.,

mixed models, Pareto frontiers, and Bayesian inference). The final two studies are more

applied studies to show how more rigorous statistical methods can become more commonplace

throughout sports science research. In particular, the final study serves as a ‘capstone’ study,

in which the uncertainty around the Pareto frontier can be estimated by a mixed model run in

a Bayesian framework. Each of the five studies are presented in manuscript form in the format

required by the individual journal guidelines (e.g., abstract length and structure); however,

to assist with thesis flow, some slight formatting changes have been made. A single reference

style was used to assist with readability, with all references placed together at the end of the

thesis, rather than keeping the references in the style of each journal.

Throughout the thesis, all the lines of code required to execute the statistics required in each

7



study is published alongside the study to provide readers with access, with the intent to

encourage Sports Scientists to adopt similar practices in their own research. By publishing

this thesis as an eBook, it is intended that the barrier for entry for Sports Scientists to such

statistical methods and frameworks can be lowered and more accessible by reading research

using such statistical methods and frameworks published within their own discipline.
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Abstract

Given the proliferation of data regarding an athlete’s physical, physiological, psychological,

and tactical state, Sports Scientists in the applied setting are increasingly being required

to provide statistics, both descriptive and inferential, to coaches and other support staff to

provide decision-making insight. However, these data sets can be imbalanced (i.e., more/less

data on some athletes), contain many variables, include small sample sizes, and display only

small individual/group differences. While these properties are not unique to sports science,

these properties are often a barrier to performing robust statistical analysis. Therefore, the

overall aim of this thesis is to provide Sports Scientists with access to applications of statistical

methods that will expand their statistical toolkit to accommodate data sets regularly seen in

a sports science context.

As sports science research consistently contains repeated measures and imbalanced data sets,

Study 1 calls for further adoption of mixed models when analysing longitudinal sports-science

data sets. Mixed models were used to understand whether the level of competition affected the

intensity of women’s rugby league match play recorded during club-, state-, and international-

level competitions. As athletes featured in all three levels of competition and there were

multiple matches within each competition (i.e., repeated measures), mixed models were shown

to be the appropriate statistical method for these data. If a repeated-measures ANOVA were

used for the statistical analysis in this study, at least 48.7% of the data would have been

omitted to meet ANOVA assumptions. However, using a mixed model, it was determined that

mean speed recorded during Test matches was 73.4 m·min-1, while the mean speed for NRLW
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and Origin matches were 77.6 and 81.6 m·min-1, respectively. Study 1 demonstrates how to

use mixed models with typical data sets acquired in the professional sports setting and calls

for mixed models to be more readily used within sports science, especially in observational,

longitudinal data sets such as movement pattern analyses.

As athletes often require a mix of physical, physiological, psychological, and skill-based at-

tributes, multiple variables need to be considered in tandem when identifying talent. Study 2

introduces Pareto frontiers as a technique that can identify the observations that possess an

optimal balance of the desired attributes, especially when these attributes are negatively corre-

lated. The study explores the trade-off relationship between batting average and strike rate as

well as bowling strike rate, economy, and average in Twenty 20 cricket. Batting and bowling

data from both the men’s (MBBL) and women’s (WBBL) Australian Big Bash Leagues were

compiled to determine the best batting and bowling performances, both within a single innings

and across each player’s Big Bash career. Each Pareto frontier identified players that were

not the highest ranked athlete in any metric when analyzed univariately and yet possess an

optimal ‘trade-off’ between attributes. Study 2 concludes that Pareto frontiers can be used

when assessing talent across multiple metrics, especially when these metrics may be conflicting

or uncorrelated and that Pareto frontiers can identify athletes that may not have the high-

est ranking on a given metric but have an optimal balance across multiple metrics that are

associated with success in a given sport.

As sporting success can be determined by the smallest margins, detecting small, worthwhile

effects is notoriously difficult, especially given the small sample sizes seen in sports science.
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Study 3 demonstrates how utilising a Bayesian framework when conducting research can in-

corporate prior information to assist in decision making when sample sizes and effect sizes

are small. The study revisits a paper published in the European Journal of Sport Science

investigating the effects of �-alanine on 4-km cycling TT performance through a randomised

placebo-controlled trial with 14 trained cyclists. By analysing the data in both a frequentist

framework and in a Bayesian framework with priors varying in terms of informativeness, the

study demonstrates why incorporating prior information can improve the quality of sports

science research and reinforces that �-alanine supplementation may be beneficial for cycling

time trials of ~6 min in duration.

Study 4 builds on the call in Study 1 for mixed models to be further adopted, by using mixed

models to quantify the position-specific demographics, technical match statistics, and move-

ment patterns of the National Rugby League Women’s (NRLW) Premiership. As women’s

rugby league grows, the need for understanding the movement patterns of the sport is essen-

tial for coaches and Sports Scientists. Global positioning system, demographic, and match

statistics collected from all NRLW clubs across the full 2018 and 2019 seasons were compared

between the ten positions using generalised linear mixed models. By understanding the load of

NRLW matches, coaches, high-performance staff, and players can better prepare as the NRLW

Premiership expands. These movement patterns and match statistics of NRLW matches can

lay the foundation for future research as women’s rugby league expands.

Finally, Study 5 brings together the mixed models discussed in Study 1, Pareto frontiers dis-

cussed in Study 2, and Bayesian inference discussed in Study 3. Team sport athletes require
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both speed and endurance to perform in their given sport; however, it is difficult to excel at

an elite level in both attributes. Univariate analysis of these attributes is commonplace in

sports science whereby speed is typically evaluated independently of endurance. While this

methodology readily identifies athletes excelling in either speed or endurance, it fails to high-

light athletes who possess ‘the best compromise’ in speed and endurance. Study 5 presents an

innovative approach to evaluating running intensity during short (10 s; anaerobic power/speed)

and long (20 min; aerobic power/endurance) periods across three seasons of elite female foot-

ball matches by using the Pareto frontier to visualize athlete characteristics simultaneously.

Given the differing number of observations for each athlete, the study uses samples drawn from

the Bayesian posterior distribution of both rolling averages estimated by a multivariate mixed

model to calculate the probability an athlete sits on the true population Pareto frontier. The

10-s and 20-min rolling averages were calculated (325.1 and 104.7 m·min-1, respectively) for

the 18 elite female footballers to provide coaches with a holistic view of their athletes’ speed

and endurance capabilities and enable a more informed decision when identifying the athletes

with the optimal balance of these polarizing attributes.

This thesis encourages Sports Scientists to develop in their statistical literacy to ensure validity

and robustness in their statistics being presented for decision-making. As repeated-measures,

imbalanced data sets, multiple variables of interest, small samples, and small effect sizes are

commonplace in sports science, this thesis is written to urge Sports Scientists to develop a

deeper understanding and improved competency in statistical methods. The thesis culminates

with Study 5 illustrating how the three different statistical concepts explored in this thesis (i.e.,

14



mixed models, Pareto frontiers, and Bayesian inference) can be used in tandem to produce

novel research. The thesis provides all the data and R code required to run all the analyses

within this thesis to ensure Sports Scientists can replicate the analyses with their own data,

as well as to provide an example to the sports science community of open and transparent

research practices. By compiling this thesis as an eBook, it is intended that Sports Scientists

can utilise these studies as a resource when conducting their own research.

Statement of Originality

This work has not been submitted previously for a degree or diploma in any university. To

the best of my knowledge and belief, the thesis contains no material previously published or

written by another person except where due reference is made in the thesis itself.
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Timothy Newans
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1 Review of the Literature

1.1 Introduction

Sports Scientists are increasingly being required to collect a lot of data and subsequently

perform complex statistical analysis to support their decision making (Garfield & Ben-Zvi,

2008). Indeed, wearable technologies, such as receivers using the Global Navigation Satellite

System (GNSS), local positioning systems, heart-rate monitors, and inertial movement unit

sensors have provided the opportunity to collect large amounts of data (Crang et al., 2021;

Seshadri et al., 2021). Recognising the need for Sports Scientists to possess the statistical

analysis skills necessary to robustly analyse sports science data, Exercise & Sports Science

Australia (ESSA), have now included ‘Data Handling and Management’ as one of their six

standards for Sports Science accreditation (Exercise and Sports Science Australia, 2019). This

standard for accreditation comprises three requirements, including: i. Assesses data critically

to identify meaningful effects, ii. Uses data to evaluate and develop programs for service users,

and iii. Translates the outcomes of data analysis into meaningful information for service users
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and other relevant stakeholders (Exercise and Sports Science Australia, 2019). While these

requirements for Sports Science accreditation may emphasize the importance of statistical

literacy, it is unclear whether simply meeting these requirements will result in a substantial

improvement in the statistical literacy of Sports Scientists. Additional training, practical

experience, and ongoing professional development may be necessary to truly enhance statistical

literacy in this field.

1.2 Defining statistical literacy

While the etymological root of the word literacy refers as ‘an ability to read and write letters’,

the Queensland Department of Education and Training (2023) defines literacy as:

“… the ability to read, view, write, design, speak and listen in a way that allows us

to communicate effectively and to make sense of the world.”

This definition moves past the idea of simply reading and writing alphabetic letters, allowing

the word literacy to be used to describe a level of competency in other concepts (Queensland

Department of Education and Training, 2023). For example, Whitehead (2010) argued that

the concept of physical literacy comprised more than skill per se, stating that:

“Physical literacy describes the motivation, confidence, physical competence, un-

derstanding and knowledge that individuals develop in order to maintain physical

activity at an appropriate level throughout their life.”

21



(Whitehead, 2010)

Whitehead’s articulation of physical literacy is now a key component of physical education glob-

ally (Scott et al., 2021) and captures four key attributes to physical literacy: i. Knowledge

and understanding of why physical activity is necessary, ii. Competence in performing a

physical activity, iii. Confidence in knowing they are proficient in the physical activity and

the associated benefits, and iv. Motivation to develop and improve in physical activity. In a

similar vein, the idea of ‘statistical literacy’ was developed Gal (2002) who proposed that:

“

𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑎𝑙𝑙𝑖𝑡𝑒𝑟𝑎𝑐𝑦𝑖𝑠

people’s ability to interpret and critically evaluate statistical information … and

their ability to discuss or communicate their reactions to such statistical informa-

tion such as their understanding of the meaning of the information, their opinions

about the implications of this information, or their concerns regarding the accept-

ability of the given conclusions.”

Within this definition there are two key components: i. The ability to interpret and critically

evaluate statistical information and ii. The ability to discuss or communicate their reactions

to statistical information. As Gal writes, these two abilities move past the minimal standard

required for what used to ratify as literacy, to a deeper understanding built on inter-related

knowledge bases.

As Sports Scientists are seeking to utilize data sets to make meaningful inferences, there is a
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minimum requisite level of statistical literacy required to correctly analyse sports science data

sets. However, Sports Scientists may be lacking in statistical literacy if they have not received

adequate formal training in appropriate statistical methods. Having adopted the four key

attributes of Whitehead’s physical literacy framework and considering Gal’s statistical literacy

definition, we propose the following framework for statistical literacy for Sports Scientists:

1. Knowledge and understanding of statistical principles and robust modeling tech-

niques;

2. Competence in performing the required statistical analyses;

3. Confidence in performing statistical methods on unfamiliar new data sets and the

subsequent interpretation of the analysis;

4. Motivation to ensure robustness and validity in the statistical analysis.

As undergraduate sports science programs typically contain an introductory statistics course,

‘Statistics for Sports and Exercise Science’ (Newell et al., 2014) provided Sports Scientists

with complete data sets and software guides to assist readers through appropriate execution of

more complex statistical analyses in a variety of situations. These resources are vital to provide

Sports Scientists with tutorials on how to execute robust statistical analysis. Similarly, it also

promotes the idea of ‘reproducible research’, in which the code used to run the analysis can be

published as a supplementary material that can critiqued for statistical rigour. However, due

to some idiosyncrasies seen in commonly found sports science data sets, Sports Scientists have

been utilising alternative methods, such as ‘customised spreadsheets’ (Batterham & Hopkins,
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2006), to provide their statistical inferences for their decision making. By relying on customised

spreadsheets, a Sports Scientist needs to trust the underlying mathematics by the authors of

the spreadsheets which, of recent times, have occasionally been shown to be flawed (Barker

& Schofield, 2008; Sainani, 2018; Welsh & Knight, 2015). The subsequent conversations and

rebuttals have challenged the status quo within sports science and have encouraged Sports

Scientists to focus on understanding the data set and correctly identifying the suitable robust

statistical methods.

This thesis presents the analyses of data collected in an applied setting using statistical princi-

ples, techniques, and methods that are not commonplace in sports-science research literature.

Its intention is to contribute to the statistical literacy of Sports Scientists by presenting, and

encouraging the further adoption of, statistical principles, techniques, and methods that could

be utilised by Sports Scientists.

1.3 Common characteristics of sports science data sets

Data obtained by Sports Scientists often cannot conform to the rigid assumptions required to

perform traditional parametric statistics. There are five key characteristics of data commonly

collected by Sports Scientists that require careful consideration when conducting statistical

analyses:

Repeated observations are measures taken on multiple occasions of the same participant

either within a discrete session such as a single match (Newans et al., 2019) or across multiple
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sessions (Quinn et al., 2020). For example, high-speed locomotive data using the GNSS is rou-

tinely collected on athletes during match play, in training, and across multiple seasons (Griffin

et al., 2021). In this instance, the assumption of ‘independence of observations’, a requirement

for many parametric inferential statistics, is not met (Hopkins et al., 2009). Consequently,

statistical methods that can accommodate for repeated observations are required.

Missing data points can be incurred when measurements are taken on several occasions

in a participant group (i.e., repeated observations), but not all participants have the same

number of observations (Nakai & Ke, 2011). For example, some athletes may play all matches

across one season ensuring their GNSS data set is complete. However, other athletes may have

missing GNSS data for one or more games due to injury or squad selection. In which case, the

data is classified as Missing at Random (MAR), where these missing data could bias the results

(Borg et al., 2021). Alternatively, there could be equipment malfunction leading to data that

is Missing Completely at Random (MCAR), which is less likely to bias the results (Borg et

al., 2021). Consequently, this creates an imbalanced data set, in which some athletes have

more observations than other athletes, ruling out statistical methods, such as the repeated-

measures ANOVA which require a ‘complete case analysis’ data set (Nakai & Ke, 2011). Thus,

Sports Scientists require methods that can accommodate data sets with irregular missing data

points.

Small sample sizes refers to a small number of participants included in a study. In sport,

the number of athletes able to participate at the highest-level of competition are relatively few

and sports scientists conducting studies at the elite level typically only having access to one
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or two teams/squads (Bernards et al., 2017; Glassbrook et al., 2019), thus small samples sizes

are commonplace in sports science research. Indeed, Abt et al. (2020) randomly sampled 120

studies from the Journal of Sports Sciences and found that the median sample size was 19

participants. Importantly, small samples may lack sufficient statistical power to extrapolate

the statistical analysis results to the overall population (Abt et al., 2020; Speed & Andersen,

2000); therefore, methods to accommodate for such small sample sizes are required.

Small effect sizes refers to the small true between-individual differences in competitive per-

formances (Mengersen et al., 2016). As the highest-level of competition within a given sport

is necessarily exclusive, the athletes within these competitions are at, or near, the peak of

their sporting abilities. Consequently, when conducting research on these athletes, the im-

provements being sought after through interventions or ergogenic aids are relatively small

compared to improvements that could be seen in a general population. For example, in the

2020 Tokyo Olympics 100-metre men’s final, only 0.18 s separated the field. While a change

of 0.18 s would be deemed relatively immaterial for a person from the general population in

improving their 100-metre sprint time, it would be the difference between a gold medal or no

medal at all for an Olympic athlete. As a result, statistical methods that can detect small

differences within a sample are also required.
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1.4 Recurrent flaws in the statistical approach to sports science

data sets

1.4.1 Inappropriate analysis of imbalanced data

One of the most-commonly violated assumptions in general linear models when analysing elite

athletes’ data is ‘independence of observations’. This can be violated when describing the move-

ment patterns of a sport where there are repeated measurements of the same participants (i.e.,

the athletes) across multiple matches (i.e., time points). The ‘independence of observations’

assumption of general linear models states that within each condition, an individual can only

be included once. This is often seen where one player has been recorded in more matches

than another athlete and, as such, the data set is weighted more heavily towards the athletes

with more observations. These MAR data points creates an ‘imbalanced’ data set, further

compounded by possible MCAR data points from errors during data collection (e.g., sensors

malfunctioning, user error) (Borg et al., 2021). Consequently, for general linear models, unless

the Sports Scientist is stringent in the inclusion of data, assumptions can easily be violated.

Repeated-measures analysis of variance (RM-ANOVA) is a commonly used general linear

model applied in these studies (Dalton-Barron et al., 2020) due to the repeated measurements

of the same participants (i.e., the athletes); however, unless strict guidelines are adhered to, it

can produce misconstrued results. RM-ANOVA requires a ‘complete’ data set to perform the

analysis, that is, every participant must have a value in every observation, and within a condi-

tion (e.g., position) every participant must have contributed an equal number of observations
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(Kenny & Judd, 1986). This is troublesome, as elite sports’ data sets are rarely ‘complete’ due

to the frequent missing data points arising from injuries, player selections, and the previously

mentioned lack of time, resources, and abilities. As a result, this limitation severely hampers

the data set’s abilities to make inferences due to the frequent missing data points.

To account for missing data, data sets need to be manipulated to correctly perform general

linear models. Whenever there is missing data within an RM-ANOVA, either the time-point

or the athlete needs to be excluded or an imputed data point needs to be inserted to retain

a ‘complete case analysis’ data set (Nakai & Ke, 2011). While removing an athlete if they

do not have an observation in every time point or removing a time point if many athletes are

missing is statistically appropriate if the missing data is proved to be random (i.e., no bias in

missing data), this method can cause unnecessary deletion of large amounts of data. Further,

if there are many participants and many time points, it can sometimes eliminate so much data

that no analysis can be performed on the remaining data set. Therefore, it is improper to use

just complete cases and different methods needs to be explored.

The second method of handling missing data that is commonly used in sports science is data

imputation (Borg et al., 2021). Sports Scientists employ different methods of ‘imputing’ esti-

mated data in place of missing data, with some utilising the time point mean, some using the

athlete’s mean, while others will employ the “last observation carried forward” method, where

the last observed value is imputed for the missing data. While imputing data can be useful

when there was an error in data collection (e.g., GNSS receiver loses signal during a match),

imputing data when an athlete never played in a match is inappropriate, Similarly, the ‘last
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observation carried forward’ method is also dangerous as it carries the strong assumption that

there was no change in conditions between the previously observed time-point and the missing

data time-point. For example, if the previously-observed time-point was in the middle of the

day, while the missing data time-point was during the night, it would be improper to assume

that the same conditions were present in both time points. Therefore, it is necessary for Sports

Scientists to utilise a method that can appropriately account for missing data.

1.4.2 Univariate analyses of multivariate concepts

When conducting inferential statistics, the goal is to translate information learned about a

sample to make inferences about a given population. As a theoretical framework, the popula-

tion parameters are never fully known, thus inferences are made based on the sample statistics.

Typically, the mean and the standard deviation of the sample are the two key statistics gath-

ered from the sample for inferences regarding the population mean to be made via the use of

a sampling distribution. This suits most research applications which focus on the population

mean as the parameter of interest to answer a given research question. However, in sports

science and talent identification, practitioners are rarely focused on finding the mean of a

population; rather, they are focused on identifying extreme values that may possess superior

performance than the average athlete within a cohort (K. Johnston et al., 2018). Consequently,

statistical methods that can elucidate information regarding the extreme values of a given data

set are also of use within a Sports Scientist’s statistical toolbox.

A stumbling block for Sports Scientists in identifying talent is the proliferation of testing pro-
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tocols, leading to an abundance of metrics concerning multiple attributes of an athlete’s talent

(e.g., physical, physiological, psychological, tactical etc.) (Dodd & Newans, 2018). While

factor-reduction techniques can be used to develop a conjugate for these various attributes

(Vaeyens et al., 2008), there is still a need to balance each of these attributes if each is equally

desirable in an athlete. For example, assume there are three attributes of interest and that

each attribute has a normal distribution and is completely independent of the other attributes.

If an athlete that is at least 1 standard deviation above the mean (i.e., approximately top

16%) is deemed ‘good’, then the probability a randomly selected athlete is ‘good’ in all three

attributes is approximately 0.4%. However, if we define that an athlete that is at least 2

standard deviations above the mean (i.e., approximately top 2.5%) is deemed ‘exceptional’,

the likelihood that a randomly selected athlete would be exceptional in all three attributes

drops to 0.002%. Unless a sporting organisation had the testing capability to identify the 2 in

100,000 that possess an exceptional standard in all three attributes, then they will necessar-

ily have to compromise on some metrics in the process of recruitment. As a result, athletes

possess the best compromise of the attributes and are only ‘good’ in all three attributes may

get missed in talent identification processes if the scouts and coaches screen using a univariate

analysis for each attribute.

1.4.3 Under-powered studies

Given the exclusiveness of the highest-level of competition in sports and that athletes are of

similar standards within these competitions, Sports Scientists are often faced with small sample
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sizes and/or small effect sizes when conducting research to improve these athletes (Atkinson

et al., 2012). As classical statistics (commonly referred to ‘frequentist statistics’) has revolved

around traditional null hypothesis statistical testing (NHST), its ability to provide meaningful

inferences in decision making for Sports Scientists is inherently difficult (Batterham & Hopkins,

2006). Statistical methods learned in undergraduate statistics courses use moderate-to-large

size samples which are amply powered, Sports Scientists’ sample sizes are typically much

smaller than that, due to the aforementioned exclusivity of elite sports and their association

with typically only one team (Bernards et al., 2017; Glassbrook et al., 2019). For example,

in team sports such as basketball, teams are only permitted limited to squads of 15 athletes,

drastically limiting a Sports Scientist’s sample size. While the sample size and effect size

issues are not limited to sports science (Bacchetti et al., 2011; Ploutz-Snyder et al., 2014),

these issues provide a barrier to the ability to perform robust statistical tests. Similarly, as the

slightest differences in score, time, or distance could affect the result of a sport, any marginal

gains are seen as a necessity (Batterham & Hopkins, 2006). However, a small effect size in the

true population may also not be detected (Borenstein, 2009; Mengersen et al., 2016; Speed

& Andersen, 2000). Consequently, under-powered studies are pervasive within sports science

research (Speed & Andersen, 2000) and methods to accommodate for such small sample sizes

and effect sizes are required.
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1.4.4 Probabilistic Statements of Inference

The use of probabilistic statements of inference within the sports science community has been

of increasing interest over the past 15 years (Batterham & Hopkins, 2006; Borg et al., 2018;

Mengersen et al., 2016; Sainani, 2018; Welsh & Knight, 2015). Of particular note, Batterham &

Hopkins (2006) began compelling readers that NHST is unnecessarily restrictive because NHST

has the assumption that the parameter of interest is ‘fixed’ (e.g., the population mean) and the

probability that the data has arisen from this fixed parameter is calculated. If it is unlikely that

the data has originated from this parameter, the null hypothesis is deemed to be rejected and

that the parameter is different to what was hypothesised. Given the small samples and small

effect sizes seen in sports science, there has been a push for more clarity around probabilistic

distributions than what NHST offers. Consequently, Batterham and Hopkins provided an

alternative to NHST named ‘magnitude-based inferences’ (Batterham & Hopkins, 2006). This

newly established method aiming to provide probabilistic inference statements gained traction

quickly, amassing over 1700 cites and was published in guidelines for authors for some journals

(Hopkins et al., 2009). While this method received early criticism (Barker & Schofield, 2008),

this criticism gained little traction. More attempts to discredit the concept of magnitude-

based inferences were vocalized by Welsh & Knight (2015) who provided a statistical review

of the method and illustrated the method’s unacceptably high levels of Type I error rates

(Welsh & Knight, 2015). However, it was not until Sainani (2018) weighed into the statistical

debate which triggered the sports science community to critically assess whether magnitude-

based inferences should be accepted within literature (Sainani, 2018). As a consequence, the
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Medicine in Sports and Exercise (MSSE) editorial board has even explicitly stated that studies

should not use magnitude-based inferences for any statistical inferences (Medicine & Science

in Sports & Exercise, 2023). However, this has left a need for robust probabilistic statements

of inference to help inform sports science practitioners and researchers.

1.4.5 Transparency in data

An additional concept to which statistical literacy is required is amidst the reproducibility crisis

seen in sports science research (Caldwell et al., 2020). In a standard sports science research

paper, researchers are expected to give a thorough explanation of the methods used to gather

their data, or otherwise cite an already-published explicit methods study. This process allows

another researcher to gather data in conditions as homogenous as possible to the original

research. While this is seen as traditional practice, the same rigour is not currently applied to

the implementation of statistical methods in which merely mentioning the statistical method

used can pass through editorial review. This lack of academic rigour results in a replication

and a reproducibility issue (John et al., 2012). With manipulation of hypotheses after results

are known, p-hacking, data dredging, cherry picking, and the file drawer problem all resulting

in a distorted view of the reality (Franco et al., 2014), the need for greater transparency in

the way researchers explain their statistical approach within studies is paramount.

Borg et al. (2020) sampled 299 ‘sports science’ studies to understand the availability of data

and the associated computer codes used in these studies and found that none of the articles

provided the code used to perform the statistical tests and only 4.3% shared the data used in
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the study (Borg et al., 2020). This shift in ideology within sports science can help alleviate

the commonly faced issues previously mentioned. While researchers may only have access to

the data of one or two teams (Bernards et al., 2017; Glassbrook et al., 2019), by adopting a

more transparent mindset to research, researchers can collaborate with other teams working

on similar projects, thus increasing their sample size, to strengthen their research impact by

alleviating struggles observed with small sample sizes (Batterham & Hopkins, 2006).

1.5 Being comfortable with variability and uncertainty

Within sports, the winner is typically determined using a quantitative scale, whether that be

a tally of points, a judge’s score, a duration, or a distance. While declaring the winner can be

determined through simple mathematics (e.g., one team scored higher than the other team),

it does not take into consideration the events leading to the outcome. That is, if each of the

events within a match were to be replicated, would it be predicted that the outcome would

be the same? Consequently, there is a need for statistics to provide the context around the

outcome of the sport. This difference between mathematics and statistics has been discussed

by Cobb & Moore (1997) who state that:

“Statistics is a methodological discipline. It exists not for itself, but rather to offer

to other fields of study a coherent set of ideas and tools for dealing with data. The

need for such a discipline arises from the omnipresence of variability.”

Statistical literacy is required to appropriately handle data that exhibits inherent variability
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and, thus, understanding the uncertainty regarding inferences arising from the data. Statistical

literacy is required to identify the correct statistical approach (knowledge), skillfully code

and interpret the output (competence), and tackle an unfamiliar data set (confidence). The

recognition and acceptance of variability in a data set is at the forefront of the GAISE report

(Franklin et al., 2007). This document outlines that the objective of statistics education is for

students to develop the ability to deal with the ubiquity of variability and the decision-making

ability of interpreting the variability in the data (Franklin et al., 2007).

As a result, for Sports Scientists to be statistically literate, they need to understand there is

an inherent variability surrounding that quantitative scale, often which can be the difference

between winning and losing (Batterham & Hopkins, 2006). Similarly, when quantifying the

response to a given external load, there will be an inherent variability due to the plethora

of external factors contributing to the load within a session (Dalton-Barron et al., 2020).

Consequently, there is a level of uncertainty with decision making as a function of the variability

within the data being collected, most plainly seen in the standard error of the mean formula:

𝑆𝐸𝑥 = 𝑠𝑥√𝑛

The level of uncertainty (in this case, standard error denoted by 𝑆𝐸𝑥 is determined by two

variables: a level of variability (the standard deviation denoted by 𝑠𝑥), and a sample size

(denoted by 𝑛). As a result, there are two contributing factors to a high level of uncertainty:

a) a high level of variability and b) a small sample size. Unfortunately, sports science data
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sets often feature both factors which suggests inferences are intrinsically difficult to deduce.

As a result, statistical methods that can robustly account for the variability within sports

science data sets and can provide estimates that reflect the uncertainty arising from the data

are required for Sports Scientists to perform high-quality research.

1.6 Mixed Models

When quantifying the external load of an athlete within a match, researchers will often gather

data from the GNSS for multiple athletes across multiple matches. When the data set is

compiled, it is highly unlikely that the same athletes played for the team every week (due

to injury, non-selection etc.). As a result, three possible options exist to ensure that the

assumptions of a RM-ANOVA are not violated:

1. Eliminate any athlete who did not play every match;

2. Eliminate any match that contained players who didn’t play many matches;

3. Impute missing data for any athlete that did not play in a given match.

Both option 1 and 2 unnecessarily eliminate crucial data, while option 3 is improper to impute

data into matches that a player never played in. Despite these limitations, RM-ANOVA

remains a common statistical method to analyse GNSS-derived data (Dalton-Barron et al.,

2020; Mara et al., 2017; Russell et al., 2016; Vigh-Larsen et al., 2018). These previously

mentioned limitations severely hamper a general linear model such as an RM-ANOVA to make

inferences due to the frequent missing data points. In contrast, there are few examples of sports
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scientists who have incorporated the use of mixed models into their research to accommodate

the challenges of sports science data sets (Delaney, Thornton, et al., 2016; Kempton et al.,

2017; Newans et al., 2019; Quinn et al., 2020).

Mixed models provide an improved alternative to general linear models within sports science

data sets. Mixed models can estimate the population mean by accounting for the variability

within each athlete as well as the variability in each time-point. Given the differing numbers

of observations for each athlete, the mixed model ‘shrinks’ the estimates for each athlete based

on their number of observations. This concept, known as ‘partial pooling’, means that athletes

with few observations are shrunk closer to the mean intercept and slope than athletes with

more observations (McElreath, 2018). Similarly, it can also account for correlations both

between and within athletes (Kwon et al., 2014). For example, within rugby league there

are nine distinct positions (plus interchange players); however, some of these positions have

more similar movement patterns than other positions. If a five-eighth were to play at halfback

for some matches, there would be minimal change in movement patterns; however, if they

were to play fullback or lock, a marked change in their movement patterns would be apparent

(Glassbrook et al., 2019). Consequently, the properties of mixed models are particularly useful

in such data sets in which athletes differ substantially in baseline physiological measures, as

well as fluctuate in their physiological measures based on differing training conditions. By

accounting for the athlete’s baseline, the condition (e.g., position in rugby league) can be

more easily interrogated. As a result, mixed models can more accurately and validly provide

information on athletes, time points, and conditions much more robustly than general linear
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models.

1.7 Pareto Frontiers

Statistical methods that can evaluate the trade-off relationship between equally desirable at-

tributes are required when identifying talent. In statistics, this is called ‘multi-objective op-

timisation’; that is, we are aiming to optimise the value of each variable at the least expense

of another variable. Consequently, the solution is a series of values in which it is not pos-

sible to improve one variable without detracting from another variable. That is, the series

of values that possess the best compromise between the variables of interest. This series of

values is deemed the ‘Pareto frontier’. This series is easily visualised as seen by the red line in

Figure 1.1.

library(tidyverse)

library(rPref)

set.seed(99.94)

df <- runif(35, 40, 80) %>%

data.frame(x = .) %>%

mutate(y = (1 / x) * rnorm(35, 100, 50)) %>%

psel(high(x) * high(y), top_level = 99) ## Generate Pareto frontier for data set of 35 random points

ggplot(df, aes(x = x, y = y, color = as.factor(`.level`), alpha = as.factor(`.level`))) +
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geom_point(size = 3) +

geom_line(data = df %>% filter(`.level` == 1),

color = "red",

linewidth = 1) +

scale_color_manual(values = c("red", rep("grey20", 10))) +

scale_alpha_manual(values = c(1.0, rep(0.4, 10))) +

coord_cartesian(xlim = c(45, 80),

ylim = c(1, 4.5)) +

labs(x = "Variable 1",

y = "Variable 2") +

theme_minimal() +

theme(

legend.position = "none",

axis.text = element_blank(),

axis.title = element_text(size = 10, color = "black", face = "bold")

) ## Plot the Pareto frontier of the points
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Figure 1.1: Illustration of the Pareto frontier, highlighted in red.

The Pareto frontier allows decision-makers to assess the series of values and determine what

trade-offs would be required if an individual were to improve in a certain variable. While

originally explored in economics by Vilfredo Pareto in the early 1900’s to understand the wealth

distribution in societies, the applications have been wide-reaching, with extensive use-cases

within economics (Horn et al., 1994; Ponsich et al., 2012; Tapia & Coello, 2007) and engineering

disciplines (Deb & Datta, 2012; Gunantara, 2018; Marler & Arora, 2004; Mastroddi & Gemma,

2013).

For example, Ottosson et al. (2009) explored the trade-off problem when providing radiation

therapy for cancer treatment. There are two key factors: i. maximising the radiation dose on

the targeted area of cancerous cells and ii. minimising the radiation damage to nearby healthy
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cells. Given the inter-dependency of these variables, no one solution is achievable; rather, a

series of possible solutions were all returned as optimal solutions (that is, no other solution is

superior in both variables of interest). Consequently, this set of observations can be provided

to decision-makers to determine which solution is most suitable for the given use-case.

With the abundance of metrics concerning multiple attributes of an athlete’s talent, under-

standing the Pareto frontier of the relationship between these metrics allow Sports Scientists

to identify more easily those with the best compromise between the attributes. For example,

when batting in Twenty20 cricket, the objective is to score as many runs as possible; but,

given the limited number of balls possible (120 balls in a standard Twenty20 innings), there

is an impetus for the batter to score their runs as fast as possible. Consequently, this creates

a trade-off relationship between the number of runs scored per dismissal (referred to as the

batting average) and the numbers of runs scored per 100 balls faced (referred to as the batting

strike rate). With univariate analyses, only the batters with either the highest batting average

or highest strike rate would be identified; however, this disregards the batters that possess the

optimal trade-off between these metrics (i.e., the ‘hybrid’ athlete). By constructing the Pareto

frontier on the relationship between these metrics, not only will the best batter for batting

average and best batter for strike rate be identified, but also the set of batters in which no

other batter scores more runs per dismissal at a faster strike rate will also be identified.
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1.8 Bayesian Modeling

Throughout all the rebuttals of magnitude-based inferences (Barker & Schofield, 2008; Borg

et al., 2018; Mengersen et al., 2016; Sainani, 2018; Welsh & Knight, 2015), the recurring

rhetoric is for Sports Scientists to adopt a fully Bayesian approach to provide probabilistic

statements when inferring conclusions. In response to the growing use of magnitude-based

inferences, Mengersen and colleagues (2016), provided a worked example and template to

perform Bayesian statistics in exercise and sports science data sets. The paper clearly ar-

ticulated the need for a Bayesian analysis for providing probabilistic statements, similar to

those provided by magnitude-based inferences (Mengersen et al., 2016). With some tutorials

being developed to provide readers with the skills in executing Bayesian modelling (Kruschke,

2014; Quintana & Williams, 2018), there appears to be a growing trend in the use of Bayesian

statistical methods in sports science (Santos-Fernandez et al., 2019). However, it seems that

there is still a lack of accessibility for Sports Scientists to grasp the knowledge of why Bayesian

inference is necessary (Mengersen et al., 2016). Therefore, the pathway from realizing the lack

of statistical rigour in these customized spreadsheets to perform fully Bayesian analysis needs

to be continually improved.

In a frequentist framework, the parameter is fixed and the probability that the data fits the null

parameter is calculated. As a result, only interpretations with respect to the null parameter can

be made. However, in a Bayesian framework, the data is fixed and, therefore, the probabilities

and subsequent distributions for each parameter can be calculated, providing much richer

information to interpret. Consequently, a key benefit that Bayesian inference provides is the
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ability to incorporate prior information to curate the model and provide estimates with more

certainty than frequentist models can provide. For example, consider the example used earlier

in the 2020 Tokyo Olympics Men’s 100-metre running. When establishing the true population

mean race time for elite male 100-m sprinters, a frequentist model has no assumed knowledge;

therefore, assumes any race time from negative infinity to positive infinity is a possible result.

While a different distribution could limit the sample space to only positive times, that is still

untenable, as the margins of victory (i.e., 0.18 s separating 1st and last place) are so minute

comparative to the sample space. However, as Sports Scientists have expert knowledge on

the possible sample space (e.g., 8 to 12 s to be overly conservative), by inserting this prior

knowledge into a Bayesian model will limit the possible sample space so that the Bayesian

model will only need to iterate over a narrower range to establish where the true population

mean lies.

1.9 Thesis Aims

The aim of this thesis is to provide Sports Scientists with access to applications of statistical

methods that will expand their statistical toolkit to accommodate data sets regularly seen in

a sports science context.

The specific aims of the experimental chapters were to:

1. Demonstrate the utility of mixed models for Sports Scientists when analysing longitudinal

data sets;
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2. Introduce Pareto frontiers to the sports science community and illustrate how they can

identify players with the optimal balance of attributes that can be obfuscated when

performing univariate analysis across each metric;

3. Explore how various prior distributions in a Bayesian framework can affect the inferences

relating to the research hypothesis;

4. Examine the position-specific demographics, technical match statistics, and movement

patterns of the National Rugby League Women’s (NRLW) Premiership;

5. Utilise Pareto frontiers to visualise the trade-off relationship between short- and long-

duration running intensities.

1.10 Thesis Structure

There are five experimental chapters to this thesis. The first three of which are more

methodology-focused, with each chapter highlighting a different statistical principle. Namely,

Chapter 3 explores mixed models, Chapter 4 explores Pareto frontiers, and Chapter 5 explores

Bayesian inference. Following this are another two chapters that are more application-focused,

building off the three methodology chapters. Chapter 6 presents a relatively simple mixed

model application study, while Chapter 7 serves as the ‘capstone’ study, presenting a Pareto

frontier of conditional effects arising from a mixed model in Bayesian framework.
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2 The Utility of Mixed Models in Sports

Science

2.1 Abstract

Title: The utility of mixed models in sports science: A call for further adoption in longitudinal

data sets

Purpose: Sports science research consistently contains repeated measures and imbalanced

data sets. This study calls for further adoption of mixed models when analysing longitudi-

nal sports-science data sets. Mixed models were used to understand whether the level of

competition affected the intensity of women’s rugby league match play.

Methods: A total of 472 observations were used to compare the mean speed of female rugby

league athletes recorded during club-, state-, and international-level competition. As athletes

featured in all three levels of competition and there were multiple matches within each com-

petition (i.e., repeated measures), we demonstrated that mixed models are the appropriate
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statistical approach for these data.

Results: We determined that if a repeated-measures ANOVA were used for the statistical

analysis in the present study, at least 48.7% of the data would have been omitted to meet

ANOVA assumptions. Using a mixed model, we determined that mean speed recorded during

Test matches was 73.4 m·min-1, while the mean speed for NRLW and Origin matches were

77.6 and 81.6 m·min-1, respectively. Random effects of team, athlete, and match all accounted

for variations in mean speed, that otherwise could have concealed the main effects of position

and level of competition had less-flexible ANOVAs been used.

Conclusion: These data clearly demonstrate the appropriateness of applying mixed models

to typical data sets acquired in the professional sports setting. Mixed models should be more

readily used within sports science, especially in observational, longitudinal data sets such as

movement pattern analyses.
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The following chapter is a copy of the published manuscript:

Newans, T., Bellinger, P., Drovandi, C., Buxton, S., & Minahan, C. The utility of

mixed models in sports science: A call for further adoption in longitudinal datasets.

International Journal of Sports Physiology and Performance. 17:8 p. 1289-1295.

As co-author of the paper “The utility of mixed models in sports science: A call for

further adoption in longitudinal datasets”, I confirm that Timothy Newans has made

the following contributions:

• Study concept and design

• Data collection

• Data analysis and interpretation

• Manuscript preparation

Name: Clare Minahan

Date: 29/03/2023

2.2 Introduction

Highly-controlled, longitudinal, or cross-over designed research experiments are difficult to

conduct in the high-performance sport environment. Researchers are regularly met with hesi-

tation from both coaching staff and the athletes due to the potential disruption ‘best-practice’
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research methodology poses to competition and their carefully configured training programs.

Nonetheless, to advance the understanding of performance and adaptation in elite athletes,

Sports Scientists, and researchers often interrogate routinely collected health (Bartlett et al.,

2020; Ferris et al., 2018; Halson, 2014), wellbeing (Bellinger et al., 2020; Gallo et al., 2017;

Govus et al., 2018), physical and physiological performance metrics, and locomotive movement

data (i.e., movement patterns) (Griffin et al., 2021; Newans et al., 2021; Quinn et al., 2020;

Thornton et al., 2020) over multiple days, weeks, and years. Indeed, these observational stud-

ies have played a critical role in the understanding and development of sports performance and

related disciplines over the last 20 years. However, these data sets are often characterized by

multiple dependent observations (not only across matches and competitions, but within each

athlete) and imbalanced data (e.g., athletes missing due to injuries, team selections, and/or

rescheduling) that pose a significant challenge for this type of research. Nonetheless, the

nuisances associated with dependent observations and imbalanced data are among the least

acknowledged when conducting sports-science research.

Analysis of variance (ANOVA) with repeated measures has dominated as the most frequently

utilized statistical method with which to analyse repeated measures data sets. However,

ANOVA requires every participant to have a value in every observation and within a condition

(e.g., position) every participant must have contributed an equal number of observations to

avoid violating the relatively stringent assumptions (Kenny & Judd, 1986). Despite these as-

sumptions, ANOVAs are still readily used within longitudinal sports science research (Hannon

et al., 2021; Haugnes et al., 2019; McCaskie et al., 2019; Rago et al., 2020; Tierney et al., 2021).
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A systematic review of contextual factors on match running in rugby league (Dalton-Barron

et al., 2020) reported that only seven of fifteen studies using the Global Navigational Satellite

System (GNSS) to quantify movement patterns in athletes during match-play accounted for

repeated measures within athletes (i.e., dependent observations). Of these seven, two studies

eliminated data to run their ANOVA, while another study did not account for the athletes’

natural variation in performance, leaving only four studies utilising their full data set. Clearly,

the characteristics of routinely collected health, wellbeing, and performance data sets in the

high-performance sport environment can involve the manipulation of data, and depending on

its severity, can undermine the confidence of analysis.

Obvious to the statistician and data analyst is that mixed models are likely a more appropriate

statistical methodology for routinely collected health, wellbeing, and performance data such

as the data in the present study. Indeed, within statistics literature, McElreath argues that

mixed models deserve to be the default form of regression and that experiments that do not

use a mixed model should justify not using this approach (McElreath, 2018). In his argument,

he lists four reasons to use mixed models: i. To adjust estimates for repeat sampling, ii.

To adjust estimates for imbalance in sampling, iii. To model variation among individuals or

other groups, and iv. To avoid averaging, as some researchers pre-average data before running

analyses (McElreath, 2018). Therefore, it is reasonable to suggest that mixed models are

the most appropriate statistical methodology to analyse longitudinal data sets often acquired

by Sports Scientists. This aligns with previous guidance by Hopkins and colleagues (2009) in

encouraging sports science researchers to utilise mixed models rather than a repeated-measures
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ANOVA (Hopkins et al., 2009). While mixed models have become more popular within sport-

science research (Bellinger et al., 2020; Newans et al., 2021; Quinn et al., 2020), the use of

mixed models are often perceived as technical and requiring statistical expertise. Thus, the

aim of this study was to make Sports Scientists aware of the utility of mixed models when

analysing longitudinal data sets. To illustrate this, we described and compared the movement

patterns of female rugby league athletes across three levels of competition. We hypothesised

that match intensity, as determined by the mean speed, would be higher in Origin matches

due to the higher quality players compared to NRLW matches and shorter duration compared

to Test matches.

2.3 Methods

2.3.1 Subjects

Over the 2018-2019 seasons, we were provided access to athlete positioning and timing data

(i.e., movement patterns) transmitted by the GNSS for Australian female rugby league athletes

including: club- (i.e., National Rugby League Women’s; NRLW), state- (i.e., State of Origin;

Origin), and international-level (i.e., Trans-Tasman Test; Test) competition. These data pro-

vided a unique opportunity to identify differences in movement patterns across three levels

of rugby league competition previously observed in female athletes of other football codes

(Andersson et al., 2010; Griffin et al., 2020). Importantly, the rugby-league data examined in

the present study included repeated match data for multiple athletes which varied in number
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and level of competition. That is, some athletes playing NRLW played more matches than

others, and some also played Origin and Test matches. This created a data set of repeated

and dependent measures as well as an imbalance in sampling among athletes and competition

level. Therefore, careful consideration of the statistical approach was paramount to derive

meaningful conclusions.

Figure 2.1 shows the sample data set that contained 109 athletes in 12 NRLW matches during

the 2018 and 2019 seasons, 49 athletes in the 2018 and 2019 Origin matches (2 matches), and

26 Australian ‘Jillaroos’ athletes in 2018 and 2019 Trans-Tasman Test matches (2 matches).

Collectively, the present study included 115 unique athletes (age = 26.8 ± 5.4 yr; height =

1.68 ± 0.07 m; body mass = 76.7 ± 11.9 kg) and 472 match entries.

2.3.2 Design

The present study was a retrospective, observational, cohort analysis using GNSS-derived data

routinely collected by each team’s Sports Scientists. The National Rugby League coordinated

the distribution of receivers, amalgamation of the data, and provision of the data sets to the

authors.

2.3.3 Methodology

The movement patterns of athletes competing in NRLW matches were collected using 10

Hz Optimeye S5 receivers (Catapult Sports, Victoria, Australia), while the Origin and Test

movement pattern data were collected using 10 Hz GPSports EVO receivers (Catapult Sports).
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Figure 2.1: Flowchart of women’s rugby league athletes playing at various competition levels
indicating the levels of dependency within the data set. N.B. NRLW = National
Rugby League Women’s; Origin = State of Origin; Test = Trans-Tasman Test.
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To measure match intensity, the mean speed (i.e., total distance divided by the time spent

on the field) of each athlete was recorded. While it was not ideal that units by different

manufacturers were used, only the total distance was required for this analysis which has been

found to differ by 1.8% between these two devices (Thornton, Nelson, et al., 2019). As the

mean speed of NRLW athletes has been found to decrease as function of the minutes played, a

minimum threshold of 20 min of game time was applied to ensure the athlete spent an adequate

time on the field. Additionally, this filter removed athletes playing for a short duration and

therefore recording a high mean speed (i.e., metres/minute) if there were no stoppages in the

short time they were on the field.

library(lme4)

library(effects)

library(dplyr)

library(sjPlot)

library(ggplot2)

library(performance)

library(see)

library(patchwork)

library(kableExtra)

options(scipen = 999)

NRLW <- read.csv("www/data/Study_1_mm_nrlw.csv") ## Read in data

NRLW$FieldTime <- chron::chron(times = as.character(NRLW$FieldTime)) ## Turn field time into a time variable type
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NRLW <- NRLW %>%

filter(FieldTime > chron::chron(times = "00:20:00")) ## Filter only those playing more than 20 min

NRLW$MMIN <- NRLW$TotalDistance / NRLW$FieldTime / 60 / 24 ## Calculate running intensity (m/min)

Consequently, of the 472 match files, 380 were deemed eligible for analysis. The Griffith

University Human Ethics Committee approved this study (GU Ref No: 2019/359).

2.3.4 Statistical Analysis

To compare the differences in analysis, both a repeated-measures ANOVA and a mixed model

were fitted to the present study data set. In both analyses, the effect of a player’s position

and level of competition on mean speed was assessed. For the ANOVA to be performed, we

restructured the data to achieve a ‘complete-case analysis’ (Nakai & Ke, 2011). The mixed

models were built using the lme4 (Bates et al., 2015) package in R version 4.0.2 (R Core Team,

2019), while the emmeans (Lenth, 2020) and sjPlot (Lüdecke, 2020) packages were used for

pairwise comparisons and model diagnostics respectively. The see (Lüdecke, Patil, et al., 2021)

and performance (Lüdecke, Ben-Shachar, et al., 2021) packages were used to determine which

model was the best performing model. The data set was arranged in ‘long form’ with each

observation for each athlete on a new row.

full_model <- lmer(MMIN ~ Competition*Position + (1|Player) + (1|Team) + (1|Match), data = NRLW) ## Build full model

After loading in the lme4 package, the first model was built and the following components
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were outlined:

1. Dependent Variable; the metric we were interested in explaining. In this case, mean speed

which as expressed as a continuous variable.

2. Fixed Effects; the variables of interest that could explain variation in the dependent vari-

ables. Here, we are looking at ‘level of competition’ and ‘playing position’. An interaction

effect was also assessed, which would determine whether the difference in mean speed because

of level of competition was uniform across all positions or whether the difference in mean speed

because of level of competition is different for each position.

3. Random Effects; the variables that contain variation purely from the random sampling

which could hide the influence of the fixed effects and would vary if the study were to be

replicated (Yarkoni, 2019). Here, they are:

i. ‘athlete’ as an individual athlete could have played up to 12 matches;

ii. ‘team’ as the team that an athlete plays for (e.g., Broncos, Roosters, QLD Maroons, etc.)

could have a confounding effect and is nested within the levels of competition;

iii. ‘match’ as there is variation match-to-match in the intensity of play, perhaps due to

weather, for example.

These can be included as random intercepts and/or as random slopes, in this example, all

three variables were included as random intercepts. By including these random effects,

we can account for the variability associated with these effects to reveal the underlying

effect of ‘level of competition’ and ‘position’ on the dependent variable.
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4. Distribution Shape; in this case, the data adequately met the assumptions for a normal

(Gaussian) mixed model. This example used a dependent variable (mean speed) that met

the assumptions of a normal (Gaussian) distribution which meant that a simpler linear mixed

model could be used in this case. However, this may not always be the case and, therefore

the dependent variable may need to be expressed as a factor or percent, or log-transformed to

reduce non-normality of the data (Hopkins et al., 2009). Alternatively, if there was frequency

data (e.g., tackle count) or probability data, a Poisson distribution or binomial distribution

respectively can be specified as the distribution family in the mixed model (using the glmer

function rather than the simpler lmer function).

Once the full model (i.e., all fixed and random effects included) was established, the full model

was compared to models without the fixed and random effects to assess the different model

fits.

full_model1 <- lmer(MMIN ~ Competition*Position + (1|Team) + (1|Match), data = NRLW) ## Build model without Player random effect

full_model2 <- lmer(MMIN ~ Competition*Position + (1|Player) + (1|Match), data = NRLW) ## Build model without Team random effect

full_model3 <- lmer(MMIN ~ Competition*Position + (1|Player) + (1|Team), data = NRLW) ## Build model without Match random effect

reduced_model1 <- lmer(MMIN ~ Competition + Position + (1|Player) + (1|Team) + (1|Match), data = NRLW) ## Build model without interaction effect

reduced_model2 <- lmer(MMIN ~ Competition + (1|Player) + (1|Team) + (1|Match), data = NRLW) ## Build model without Position effect

reduced_model3 <- lmer(MMIN ~ Position + (1|Player) + (1|Team) + (1|Match), data = NRLW) ## Build model without Competition effect

model_comparison <- compare_performance(full_model,full_model1,full_model2,full_model3, reduced_model1,reduced_model2,reduced_model3) ## Compare the models' performance

When comparing models using the Akaike Information Criterion (AIC), it was determined that
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the full model was the preferred model as it displayed the lowest AIC. AIC was chosen as it

includes a model complexity term (twice the number of model parameters) to penalise models

containing variables that did not contribute to the model. The R2 and Root-Mean-Square

Error (RMSE) were also reported for the reader but were not used for model selection. As the

models were nested, a likelihood ratio test could also have been used.

To meet the assumptions of a mixed model, a histogram of the residuals was generated to assess

the normality of the residuals, Q-Q plots for each random effect were generated to assess the

normality of the random effects, and the model’s residuals were plotted against its fitted value

to assess homoscedasticity.

diag <- plot_model(full_model, type = "diag") ## Assess model diagnostics

2.3.4.1 QQ Plot of residuals

plot_model(full_model, type = "diag")[[1]] +

theme_minimal()+

theme(plot.title = element_blank(),

plot.subtitle = element_blank(),

axis.title = element_text(size = 10, color = "black", face = "bold")) ## Generate Q-Q plot of predicted to residuals
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Figure 2.2: Q-Q Plot of residuals for full mixed model.

2.3.4.2 Normality Plot of residuals

plot_model(full_model, type = "diag")[[3]] +

theme_minimal() +

theme(plot.title = element_blank(),

plot.subtitle = element_blank(),

axis.title = element_text(size = 10, color = "black", face = "bold")) ## Generate histogram of residuals
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Figure 2.3: Histogram of residuals for full mixed model.

2.3.4.3 Homoscedasticity Plot of residuals

plot_model(full_model, type = "diag")[[4]] +

theme_minimal() +

theme(plot.title = element_blank(),

plot.subtitle = element_blank(),

axis.title = element_text(size = 10, color = "black", face = "bold")) ## Generate homoscedasticity plot of residuals
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Figure 2.4: Homoscedasticity of residuals for full mixed model.

None of these assumptions were violated so, therefore, it was deemed appropriate to proceed

with the analysis.

2.4 Results

In order to meet the assumptions of a repeated-measures ANOVA, we restructured the data

to achieve a ‘complete-case analysis’ (Nakai & Ke, 2011), which eliminated any athlete that

did not feature in all three levels of competition. This initial filter eliminated 48.7% of the

available data. Of the remaining data, each athlete varied from one to seven observations

within each level of competition which continued to threaten the validity of the analysis as

multiple observations of one athlete could bias the results. Secondly, it would not be suitable to
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answer the hypothesis as eliminating any athlete that did not play in the Test matches would

result in the average NRLW mean speed being compiled of only athletes that had played in

both Origin and Test matches, rather than the collective NRLW cohort. Alternatively, if

we used the mean for each athlete in each level of competition, this reduced the number of

observations to 157 (i.e., eliminated 58.7% of the available data). However, when averaging

each athlete’s values, it would not account for the fact that there is less uncertainty in the

mean speed of an athlete that had seven observations compared to an athlete that only has

one observation. Therefore, it was determined that it was not appropriate to run an ANOVA

across this data set. Due to the use of ANOVA being deemed inappropriate to adequately

analyse these data, only the results of the mixed model are presented here.

2.4.1 Model Comparisons

Seven mixed models were assessed: the full model (i.e., containing all fixed and random effects),

three models with each model removing one random effect, and three models removing the

interaction effect, the competition level, and position respectively. The full model displayed

the lowest AIC, the equal-highest R2, and the lowest RMSE and, therefore, was chosen as the

preferred model. The results are displayed in Table 2.1. We can write the selected model in

short form as:

𝑀𝑒𝑎𝑛𝑆𝑝𝑒𝑒𝑑𝑝𝑚𝑡𝑖 = 𝛽0+𝛽1×𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛𝑝𝑡𝑚𝑖+𝛽2×𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑝𝑡𝑚𝑖+𝛽3×𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛𝑝𝑡𝑚𝑖×𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑝𝑡𝑚𝑖+𝛾𝑝
𝑝𝑙𝑎𝑦𝑒𝑟+𝛾𝑚

𝑚𝑎𝑡𝑐ℎ+𝛾𝑡
𝑡𝑒𝑎𝑚+𝜀𝑝𝑡𝑚𝑖
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where 𝛾𝑝
𝑝𝑙𝑎𝑦𝑒𝑟 ∼ 𝑁(0, 𝜎𝑝

2), 𝛾𝑚
𝑚𝑎𝑡𝑐ℎ ∼ 𝑁(0, 𝜎𝑚

2) , and 𝛾𝑡
𝑡𝑒𝑎𝑚 ∼ 𝑁(0, 𝜎𝑡

2) are the random

intercepts for player, match, and team respectively, and 𝜀𝑝𝑡𝑚𝑖 ∼ 𝑁(0, 𝜎2) is the residual term.

All these terms are normally distributed with zero mean and variance given by the second

term in the parentheses. The random effects are crossed (i.e., not nested) since, for example,

a player can play for multiple teams. The model is parameterised so that the intercept term

𝛽0 corresponds to Test level of competition and the Adjustable position. Since there are

three competitions and four positions in the data, the number of elements in 𝛽1, 𝛽2 and 𝛽3 is

two, three and six, respectively, and are to be interpreted relative to the baseline categories

in 𝛽0. Correspondingly, Competitionptmi 𝜀 {“Origin”, “NRL”} and Positionptmi 𝜀 {“Backs”,

“Forwards”,“Interchange”}. Here the subscripts p, m, t and i refer to the pth player, mth

match, tth team, and the ith observation for each combination of player, match, and team.

model_comparison %>%

select(Name, AIC, R2 = R2_conditional, RMSE) %>%

mutate(AIC = round(AIC, 1),

R2 = round(R2, 2),

RMSE = round(RMSE, 2)) ## Generate table comparing models with and without random and fixed effects

Table 2.1: Model comparison of mixed models with and without random and fixed effects.

Model AIC R2 RMSE

Full Model 2379.4 0.65 3.96

Model without Player random effect 2425.9 0.44 5.47
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Model AIC R2 RMSE

Model without Match random effect 2481.2 0.38 5.38

Model without Team random effect 2384.5 0.62 4.00

Model without Interaction fixed effect 2398.1 0.65 4.01

Model without Competition fixed effect 2406.2 0.64 4.01

Model without Position fixed effect 2407.0 0.64 4.03

N.B. AIC = Akaike’s Information Criterion, RMSE = Root Mean Squared Error

2.4.2 Random Effects

When considering the model comparison, the full model with player, team, and match random

effects was preferred over the reduced models that removed each of the random effects, as

evidenced by the full model having the lowest AIC value. Similarly, when assessing the variance

explained by each of the random effects, it was determined that all three random effects should

remain in the model. The estimated random effects variances are displayed in Table 2.2,

together with the estimated residual variance. The conditional means for each level of random

effect are displayed in Figure 2.5, Figure 2.6, and Figure 2.7.

VarCorr(full_model) %>%

as.data.frame() %>%

mutate(`Variance ± SE` = paste0(round(vcov, 1), " ± ", round(sdcor, 1))) %>%
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select(`Source of Variance` = grp,

`Variance ± SE`) ## Generate table of random effect variances and residual

Table 2.2: Estimated variances for random effects and the model residual variance.

Source of Variance Variance ± SE

Player 13.66 ± 3.70

Match ID 14.61 ± 3.82

Team 4.31 ± 2.08

Residual 20.61 ± 4.54

The player conditional means differed between -6.9 to 5.9 m·min-1 from the marginal mean,

the team conditional means differed between -2.7 to 2.1 m·min-1, and the match conditional

means differed between -8.7 to 5.8 m·min-1 from the marginal mean.

2.4.2.1 Player

ggplot(diag[[2]]$Player$data, aes(x = ID, y = y)) +

geom_errorbar(aes(ymin = y - ci, ymax = y + ci), color = "#333333") +

geom_point(color = "black") +

scale_x_discrete(labels = NULL) +

coord_cartesian(ylim = c(-11, 11)) +

theme_minimal() +
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labs(x = "Player",

y = "Random Effect Intercept") +

theme(panel.grid.major.x = element_blank(),

axis.title = element_text(size = 10, color = "black", face = "bold")) ## Generate Player random effect plot
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Figure 2.5: Random effects for each level of player.

2.4.2.2 Team

ggplot(diag[[2]]$Team$data, aes(x = ID, y = y)) +

geom_errorbar(aes(ymin = y - ci, ymax = y + ci), color = "#333333") +

geom_point() +

theme_minimal() +

scale_x_discrete(labels = NULL) +
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coord_cartesian(ylim = c(-11, 11)) +

labs(x = "Team",

y = "Random Effect Intercept") +

theme(panel.grid.major.x = element_blank(),

axis.title = element_text(size = 10, color = "black", face = "bold")) ## Generate Team random effect plot
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Figure 2.6: Random effects for each level of team.

2.4.2.3 Match

ggplot(diag[[2]]$Match$data, aes(x = ID, y = y)) +

geom_errorbar(aes(ymin = y - ci, ymax = y + ci), color = "#333333") +

geom_point() +

theme_minimal() +

66



scale_x_discrete(labels = NULL) +

coord_cartesian(ylim = c(-11, 11)) +

labs(x = "Match",

y = "Random Effect Intercept") +

theme(panel.grid.major.x = element_blank(),

axis.title = element_text(size = 10, color = "black", face = "bold")) ## Generate Match random effect plot
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Figure 2.7: Random effects for each level of match.

2.4.3 Fixed Effects

Table 2.3 displays the additive interaction effects to calculate each permutation within the data

set. The intercept (i.e., 74.5 m·min-1) represents the mean speed for a Test adjustable player

on average. From here, the coefficients can be added depending on what level of competition
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and what position was being played. For example, for the mean speed of an Origin forward

athlete, you would start with the intercept of 75.0 m·min-1. From here, you will add 8.7

m·min-1 for an Origin-level athlete, then add another 1.9 m·min-1 for a forward, and then

subtract 2.2 m·min-1 for the interaction effect of an Origin-level forward, resulting in an

estimated mean of 83.4 m·min-1.

mm_fixed_effect_summary <- summary(full_model)$coef %>%

data.frame() %>%

mutate(`Fixed Effect` = rownames(.)) ## Generate fixed effect coefficients

mm_confint <- confint(full_model) %>%

data.frame() %>%

mutate(`Fixed Effect` = rownames(.)) ## Generate fixed effect confidence intervals

mm_fixed_effect_summary %>%

left_join(mm_confint) %>%

mutate(`95% CI` = paste0(round(X2.5.., 1), " to ", round(X97.5.., 1)),

Estimate = round(Estimate, 1)) %>%

select(`Fixed Effect`, Estimate, `95% CI`) ## Compile table of fixed effect coefficients and confidence intervals
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Table 2.3: Estimated means for fixed effects and interactions.

Fixed Effect Estimate (95% CI)

Intercept 74.5 (67.0 – 82.0)

Competition - Test -

Competition - Origin 8.7 (-1.1 – 18.5)

Competition - NRLW 5.1 (-2.9 – 13.1)

Position - Adjustables -

Position - Backs -2.6 (-8.2 – 3.0)

Position - Forwards 1.9 (-3.5 – 7.1)

Position - Interchange -3.9 (-9.2 – 1.4)

Interaction: NRLW-Backs -1.6 (-7.0 – 3.9)

Interaction: Origin-Backs 1.1 (-5.3 – 7.7)

Interaction: NRLW-Forwards -3.9 (-9.2 – 1.3)

Interaction: Origin-Forwards -2.2 (-8.5 – 4.1)

Interaction: NRLW-Interchange 2.2 (-3.2 – 7.6)

Interaction: Origin-Interchange -0.9 (-7.7 – 6.0)

Figure 2.8 presents the estimated marginal means for mean speed recorded during NRLW,

Origin, and Test matches. Origin matches recorded, on average the highest mean speed,

followed by NRLW matches, and then Test matches. When considering position, in both

NRLW and Origin matches, adjustables recorded the highest mean speed; however, forwards
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recorded the highest mean speed in Test matches. Meanwhile, backs recorded the lowest mean

speed in NRLW matches, with interchange recording the lowest mean speed in both Origin

and Test matches. As the changes in mean speed across competitions were not uniform across

all competition, this confirmed the presence of an interaction effect.

Position_Estimates <- effect("Competition*Position", full_model) %>%

data.frame() %>%

select(Competition, Position, fit, lower, upper) %>%

mutate_at(vars(fit, lower, upper), round, 1) ## Create parameter estimates based on position and Competition

ggplot(Position_Estimates, aes(x = 1, y = fit, shape = Position)) +

geom_jitter(position = position_dodge(width = 0.5), size = 3) +

geom_errorbar(aes(ymin = lower,

ymax = upper),

width = 0.5,

alpha = .75,

position = position_dodge(width = 0.5)

) +

theme_bw() +

scale_y_continuous(breaks = seq(60, 100, 10),

limits = c(60, 100)) +

facet_wrap( ~ Competition, ncol = 3) +
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labs(y = bquote(bold('Mean Speed (m·min ' ^ -1 * ')'))) +

theme(

panel.grid.major.x = element_blank(),

panel.grid.minor.x = element_blank(),

panel.grid.major.y = element_line(colour = "grey50",

linewidth = 0.2),

panel.grid.minor.y = element_blank(),

axis.ticks = element_blank(),

axis.title.x = element_blank(),

axis.text.x = element_blank(),

axis.title.y = element_text(size = 10, color = "black"),

axis.text.y = element_text(colour = "black", size = 12),

strip.text.x = element_text(colour = "black", size = 12, face = "bold"),

legend.position = "bottom",

legend.title = element_text(colour = "black", size = 12, face = "bold"),

legend.text = element_text(colour = "black", size = 10) ## Generate marginal mean plot for mean speed

)
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Figure 2.8: Mean speed of women’s rugby league athletes by competition level and position.
N.B. NRLW = National Rugby League Women’s; Origin = State of Origin; Test
= Trans-Tasman Test.

2.5 Discussion

The present study displayed why mixed models should be the more heavily-adopted when

analysing sports science field-based data sets with repeated measures, like the rugby league

women’s data set used in this study. Mixed models were able to account for multiple observa-

tions of the same individuals in the data set, players changing positions between matches, and

account for inter-player, inter-match, and inter-team dependencies to extract the true effects

of position and level of competition on mean speed and the appropriate quantification of the

uncertainty of these estimates. One strength of the mixed model in analysing data was its

ability to account for the differing number of observations of athletes. In the data set, athletes
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ranged between one and nine matches played with 24 athletes playing only one match, while

five athletes played nine matches each. This is not ideal when applying repeated-measures

ANOVA as either some athletes or some time points (i.e., games) would need to be excluded

from the analysis. While removing an athlete if they do not have an observation in every time

point or removing a time point if many athletes are missing is statistically appropriate if the

missing data points are proved to be missing completely at random (i.e., no bias in missing

data) (Borg et al., 2021), this method can cause unnecessary deletion of large amounts of data.

If there are many participants and many time points, it can sometimes eliminate so much

data that no analysis can be performed on the remaining data set; for example, 48.7% of the

data collected for the present study would have been omitted when filtering out players that

did not participate in Origin or Test matches. However, mixed models can attribute a level

of uncertainty to each athlete dependent on their sample size and, therefore, the model can

more accurately quantify the true mean speed of a player with nine observations compared

to a single observation of another athlete. In doing so, mixed models create flexibility in the

data sets that can be utilised that more closely align to data sets seen in sports due to in-

juries, squad selection, and access to athletes on a given day. The mixed model provided an

analysis that could retain all available data points and did not require the elimination of data

points to retain a ‘complete case analysis’ data set (Nakai & Ke, 2011), nor did it require data

imputation to estimate missing data (Borg et al., 2021).

Another strength of the mixed model was its ability to use the dependency within the data

set to increase the power of the statistics, rather than detract like in general linear model
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applications. For example, in the present study, since there were only two matches at an

international level and only two matches at Origin level, these sample sizes would be under-

powered when using a linear model; however, when merged with the twelve NRLW matches,

the model can draw on the variance attributed to players and positions to estimate the effects

of level of competition more robustly. Similarly, two players played in three of the different

positional groups which would typically require the athlete to have matches in which they

were not in their ‘primary’ position to run parametric general linear models. However, this

information is actually very useful as it enables the model to observe the same athlete, in the

same team, in the same level of competition but in a different position which provides more

information than if the two positional groups were completely independent of each other. That

is, by enabling players to be their own control group, they can more accurately interrogate

the between-position differences in mean speed. As a result, mixed models can more accu-

rately and more robustly determine the variation attributable to athletes, time points, and

conditions (e.g., position) much more than any general linear model. Additionally, by using a

mixed model, it was evident that the random effect for player is larger than the fixed effect of

position, which would not be able to be established when using a repeated-measures ANOVA.

Therefore, this reinforces that individualised training for an athlete, rather than the position,

is more important from a training prescription perspective.

When considering the findings of this study, the reduced overall mean speed recorded for the

Test (80 min), compared with the Origin (60 min) and NRLW (60 min) matches in the present

study could be explained by the longer Test-match duration. We have previously reported that

74



the mean speed when travelling >12 km·h−1 of athletes recorded during international matches

declines by �40% within the first half of the match (Quinn et al., 2020). We also previously

demonstrated that there were no significant differences in the relative distances covered in

any of the speed zones, as well as the overall mean speed when comparing the first and

second half of NRLW matches (Newans et al., 2021). These results contrast with those seen in

other codes, with significantly increased total distance and high-speed running in international

football compared to domestic football (Griffin et al., 2020). On closer examination of mean

speed in the present study, it was evident that the position contributed to the model with

forwards recording the highest intensity and the interchange athletes delivering the lowest

intensity. This could be due to a disparity in playing ability between the starting forwards and

the interchange replacements. We previously established that the mean speed of interchange

athletes significantly reduced as their playing duration increased (Newans et al., 2021), which

could explain why at the international level, when interchange athletes are required to play

increased minutes due to the longer format, they cannot sustain the same intensity as the

starting forwards.

2.6 Conclusion

The requirement to account for repeated measures and imbalanced data is pertinent in longi-

tudinal sports science data sets. As previous studies have demonstrated a lack of statistical

literacy to correctly understand dependency within data sets and the consequent violations of

parametric statistical assumptions, the present study provides a more thorough account of the
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process, the associated R script, and the resultant interpretations to inform Sports Scientists

on mixed models. It is anticipated that the present study will empower Sports Scientists to

assess the various dependencies more critically within their data sets.

2.7 Practical Applications

• Mixed models should be a more-heavily adopted statistical method for analysing

sports science data sets with repeated measures as they are more flexible than

repeated-measures ANOVA

• Mixed models can accommodate differing frequency of observations of athletes and play-

ers swapping positions in between matches

• If Test matches continue to be 80 min in duration, the physical and physiological capacity

of athletes should be improved to maintain running intensity at the international level

• NRLW matches should be increased to 70 min in 2022 to gradually bridge the gap

between domestic- and international-level competition
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3 Pareto Frontiers for Multivariate Sports

Performance

3.1 Abstract

Athletes often require a mix of physical, physiological, psychological, and skill-based attributes

that can be conflicting when competing at the highest level within their sport. When con-

sidering multiple variables in tandem, Pareto frontiers is a technique that can identify the

observations that possess an optimal balance of the desired attributes, especially when these

attributes are negatively correlated. This study presents Pareto frontiers as a tool to identify

athletes who possess an optimal ranking when considering multiple metrics simultaneously.

This study explores the trade-off relationship between batting average and strike rate as well

as bowling strike rate, economy, and average in Twenty 20 cricket. Eight hundred ninety-one

matches of Twenty 20 cricket from the men’s (MBBL) and women’s (WBBL) Australian Big

Bash Leagues were compiled to determine the best batting and bowling performances, both

within a single innings and across each player’s Big Bash career. Pareto frontiers identified 12
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and seven optimal batting innings performances in the MBBL and WBBL respectively, with

nine and six optimal batting careers respectively. Pareto frontiers also identified three optimal

bowling innings in both the MBBL and WBBL and five and six optimal bowling careers in

MBBL and WBBL, respectively. Each frontier identified players that were not the highest

ranked athlete in any metric when analyzed univariately. Pareto frontiers can be used when

assessing talent across multiple metrics, especially when these metrics may be conflicting or

uncorrelated. Using Pareto frontiers can identify athletes that may not have the highest rank-

ing on a given metric but have an optimal balance across multiple metrics that are associated

with success in a given sport.
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The following chapter is a copy of the published manuscript:

Newans, T., Bellinger, P., & Minahan, C. The balancing act: Identifying multivari-

ate sports performance using Pareto frontiers. Frontiers in Sports and Active Living.

4:918946.

As co-author of the paper “The balancing act: Identifying multivariate sports perfor-

mance using Pareto frontiers”, I confirm that Timothy Newans has made the following

contributions:

• Study concept and design

• Data collection

• Data analysis and interpretation

• Manuscript preparation

Name: Clare Minahan

Date: 29/03/2023

3.2 Introduction

Many sports require athletes to possess well-developed physiological or mechanical characteris-

tics (e.g., endurance, maximal sprint speed) and/or skill-related attributes (i.e., shot speed and

shot accuracy) that are often opposing and/or are not associated. These disparate attributes
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appear to be more obvious between athletes in team sports when compared to specific disci-

plines in individual sports that require highly specific attributes for success (e.g., track sprint

cycling (Lievens et al., 2021) or marathon running (A. Jones et al., 2021)). Furthermore, it is

not unusual for team sports to include both specialists, such as athletes who possess superior

maximal sprint speed and athletes who possess superior endurance capacity, and individual

athletes who have a wide range of physiological/mechanical and skill-related attributes. For

instance, in stick or racquet sports such as golf and tennis, each athlete is required to balance

the accuracy and speed of their strokes (Maquirriain et al., 2016; Wells et al., 2009); while in

most team sports, an athlete should develop a balance of speed and endurance (Stølen et al.,

2005). Moreover, in sports like cricket, an athlete is required to balance their batting/bowling

average with their batting/bowling strike rate or economy (Barr & Kantor, 2004; Patel et al.,

2017). In each of these examples, a case could be made for which is the preferred attribute;

however, the preferred attribute may differ given the other athletes within a particular team

or given a particular situation within a single match. A cohesive team may require a squad of

players that differ in their balance of attributes and, therefore, it is apparent that performance

analysis requires a multi-faceted approach when selecting prospective players.

While talent identification processes have been extensively reported (Dodd & Newans, 2018;

Falk et al., 2004; K. Johnston et al., 2018; Pion et al., 2015; Pyne et al., 2005; Till et al.,

2016), standards and benchmarks are typically reported univariately; that is, each attribute

is assessed in isolation. For example, players could be standardized within each attribute (i.e.,

z-scores) to determine where the athlete sits with respect to the rest of the athletic population
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(Turner et al., 2019). However, this method has a flaw, in that some attributes are negatively

correlated, as well as physiological/mechanical characteristics such as maximal sprint speed

and endurance capacity (Sánchez-García et al., 2018). Therefore, if an athlete excels in one

attribute, it is likely that this would come at the expense of a conflicting attribute. By assessing

talent identification univariately, athletes are identified when they have specialist skills (e.g.,

strongest, fastest, fittest, leanest etc.) (Minahan et al., 2021). Although a given sport often

requires a balance of these attributes, it is reasonable to suggest that talent identification

processes should assess talent multivariately, that is, multiple variables in tandem, rather than

univariately.

The process of optimizing the balance of multiple attributes is termed “multi-objective opti-

mization”. This technique is becoming increasingly of interest with recent developments in

machine learning algorithms; however, their origins are quite simple mathematically in that

they aim to create the perfect balance of the attributes of interest. If a data point was defined

as: ⃗𝑥1 𝜀 𝑋, it is, therefore, better than another data point defined by: ⃗𝑥2 𝜀 𝑋 if 𝑓𝑖( ⃗𝑥1) ≤ 𝑓𝑖( ⃗𝑥2)

for all metrics i 𝜀 {1, 2, …, k} and 𝑓𝑖( ⃗𝑥1) < 𝑓𝑖( ⃗𝑥2)for at least one metric j 𝜀 {1, 2, …, k}.

Once these conditions have been met, the remaining points are deemed Pareto-optimal and

form what is called the Pareto frontier. There are two key strengths to using Pareto frontiers.

Firstly, when balancing multiple attributes, Pareto-optimal observations can be identified with

just few lines of computer code. Secondly, when visualizing a limited number of attributes

(i.e., three or less), the Pareto frontier is intuitive and can be clearly identified, assisting in

the translation and interpretation of the results to coaches and other support staff. This has
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been used in other fields such as designing aircrafts with maximum aerodynamic efficiency,

maximum range, and minimum weight (Mastroddi & Gemma, 2013). However, there is very

limited use of Pareto frontiers within sport (Pérez-Toledano et al., 2019). By using Pareto

frontiers, the optimal balance of all these attributes can be identified rather than guessing

through siloed univariate analyses.

To illustrate the concept of Pareto frontiers, the present study used batting and bowling data

in Twenty 20 (T20) cricket. Like other forms of cricket (i.e., Test and one-day matches),

T20 cricket requires players to score as many runs as possible within the allotted 20 overs

without being dismissed (i.e., being bowled, caught out, run out etc.). In addition, players of

T20 cricket also need to score runs in as few deliveries as possible. Therefore, it is difficult to

determine whether 80 runs “off” (i.e., from) 60 balls or 40 runs off 20 balls is of more benefit to

a team as their differing risk profiles contribute differently to the formation of the team (Bukiet

& Ovens, 2006). For example, early on in an innings the risk-return of attempting to hit six

runs off a ball is significantly different than in the final over of an innings. Similarly, a bowler

needs to balance taking wickets while also conceding as few runs as possible. For instance,

when bowling four overs, it is again difficult to determine whether taking three wickets for 50

runs is of more worth than taking no wickets but only conceding eight runs as the three wickets

may not have been worth conceding 50 runs. Therefore, when assessing the quality of players,

it is necessary to utilize tools that can analyse these data sets without favoring one metric

over another. The concept of Pareto frontiers is one such tool and, therefore, the present

study aimed to introduce Pareto frontiers to the sports science community and illustrate how
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they can identify players with the optimal balance of attributes that can be obfuscated when

performing univariate analysis across each metric.

3.3 Methods

The present study comprised all 489 matches of the first 11 editions of the Men’s Big Bash

League (MBBL) and all 402 matches of the first seven editions of the Women’s Big Bash League

(WBBL), Australia’s domestic T20 cricket competition. The MBBL data set contained 423

batters and 313 bowlers, while the WBBL data set contained 214 batters and 159 bowlers.

All scorecards were freely available online. Collectively, there were 13,764 individual batting

innings with observations ranging from 1 to 113 innings per batter, while there were 10,796

individual bowling innings with observations ranging from 1 to 106 innings per bowler.

library(tidyverse)

library(rPref)

library(patchwork)

library(scatterplot3d)

options(scipen = 999)

mbblbat <- read_csv('www/data/Study_2_pareto_mbblbat.csv') # Men's batting scorecards

mbblbowl <- read_csv('www/data/Study_2_pareto_mbblbowl.csv') # Men's bowling scorecards

wbblbat <- read_csv('www/data/Study_2_pareto_wbblbat.csv') # Women's batting scorecards

wbblbowl <- read_csv('www/data/Study_2_pareto_wbblbowl.csv') # Women's bowling scorecards

83



To summarize the data, two summary statistics were generated for batting and three summary

statistics were generated for bowling. The summary statistics were as follows:

• Batting Average: runs scored divided by frequency of dismissal

• Batting Strike Rate: runs scored divided by balls faced multiplied by 100

• Bowling Average: runs conceded divided by wickets taken

• Bowling Strike Rate: balls bowled divided by wickets taken

• Bowling Economy: runs conceded divided by overs (i.e., 6 balls) bowled

dismissals_men <- mbblbat %>%

group_by(id) %>%

filter(Dismissed == T) %>%

summarise(Dismissals = n()) ## Calculate number of dismissals

notouts_men <- mbblbat %>%

group_by(id) %>%

filter(Dismissed == F) %>%

summarise(NotOuts = n()) ## Calculate number of not outs

sumBat_men <- mbblbat %>%

group_by(id, Batter, LastName) %>%
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summarise(

TotalRuns = sum(R),

TotalBalls = sum(B),

Innings = n()

) %>%

ungroup() %>%

left_join(dismissals_men) %>%

left_join(notouts_men) %>%

mutate(

Dismissals = case_when(is.na(Dismissals) ~ as.integer(0),

T ~ Dismissals),

NotOuts = case_when(is.na(NotOuts) ~ as.integer(0),

T ~ NotOuts),

Average = TotalRuns / Dismissals,

StrikeRate = TotalRuns / TotalBalls * 100) ## Calculate career batting average and strike rate

filtBat_men <- sumBat_men %>%

filter(Innings >= 15) ## Filter only those with 15 or more batting innings

sumBowl_men <- mbblbowl %>%

group_by(id, Bowling, LastName) %>%
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summarise(

Innings = n(),

Balls = sum(Balls),

Wickets = sum(W),

Runs = sum(R)

) %>%

mutate(

Average = Runs / Wickets,

Economy = Runs / Balls * 6,

StrikeRate = Balls / Wickets

) ## Calculate bowling average, economy, and strike rate

filtBowl_men <- sumBowl_men %>%

filter(Balls >= 200) %>%

ungroup() ## Filter only those with 200 or more bowling deliveries

dismissals_women <- wbblbat %>%

group_by(id) %>%

filter(Dismissed == T) %>%

summarise(Dismissals = n()) ## Calculate number of dismissals
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notouts_women <- wbblbat %>%

group_by(id) %>%

filter(Dismissed == F) %>%

summarise(NotOuts = n()) ## Calculate number of not outs

sumBat_women <- wbblbat %>%

group_by(id, Batter, LastName) %>%

summarise(

TotalRuns = sum(R),

TotalBalls = sum(B),

Innings = n()

) %>%

ungroup() %>%

left_join(dismissals_women) %>%

left_join(notouts_women) %>%

mutate(

Dismissals = case_when(is.na(Dismissals) ~ as.integer(0),

T ~ Dismissals),

NotOuts = case_when(is.na(NotOuts) ~ as.integer(0),

T ~ NotOuts),

Average = TotalRuns / Dismissals,
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StrikeRate = TotalRuns / TotalBalls * 100) ## Calculate career batting average and strike rate

filtBat_women <- sumBat_women %>%

filter(Innings >= 15) ## Filter only those with 15 or more batting innings

sumBowl_women <- wbblbowl %>%

group_by(id, Bowling, LastName) %>%

summarise(

Innings = n(),

Balls = sum(Balls),

Wickets = sum(W),

Runs = sum(R)

) %>%

mutate(

Average = Runs / Wickets,

Economy = Runs / Balls * 6,

StrikeRate = Balls / Wickets

) ## Calculate bowling average, economy, and strike rate

filtBowl_women <- sumBowl_women %>%

filter(Balls >= 200) %>%
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ungroup() ## Filter only those with 200 or more bowling deliveries

To understand optimal batting performance, the number of runs scored as well as the rate

at which these runs were scored are both of importance in Twenty20 cricket (Barr & Kantor,

2004). As it was expected that there would be a trade-off relationship between these variables,

there would be multiple batters that possess an optimal balance of these attributes. Therefore,

it was deemed appropriate that a Pareto frontier could be established to identify these batters.

Similarly, to identify optimal bowling performance, the number of wickets, runs conceded, and

rate of which the wickets and runs are recorded are all of importance (Patel et al., 2017). As

the number of wickets taken can come at the expense of runs conceded, it was also expected

that no bowler would be optimal in every attribute and therefore, a Pareto frontier would

also be required to identify the bowlers that possess the optimal balance of these bowling

attributes.

Consequently, four Pareto frontiers for each competition were established within the data

set:

• Pareto-optimal Batting Innings

This analysis outlined the highest runs scored within an innings at the highest strike

rate.

BatInnPareto_men <- psel(mbblbat %>% filter(R > 0), high(R) * high(SR), top_level = 999) ## Identify Pareto frontier for men's BBL batting innings

BatInnPareto_women <- psel(wbblbat %>% filter(R > 0), high(R) * high(SR), top_level = 999) ## Identify Pareto frontier for women's BBL batting innings
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• Pareto-optimal Batting Career

This analysis outlined the highest batting average across a career at the highest strike rate.

To provide a more accurate career report, batters required to have played a minimum of

15 innings which left 158 eligible male batters and 116 eligible female batters.

BatCarPareto_men <- psel(filtBat_men,high(Average) * high(StrikeRate), top_level = 999) %>%

filter(Average > 20 | StrikeRate > 100) ## Identify Pareto frontier for men's BBL batting career

BatCarPareto_women <- psel(filtBat_women,high(Average) * high(StrikeRate), top_level = 999) %>%

filter(Average > 20 | StrikeRate > 100) ## Identify Pareto frontier for women's BBL batting career

• Pareto-optimal Bowling Innings

This analysis outlined the most wickets taken in an innings at the lowest economy.

BowlInnPareto_men <- psel(mbblbowl, high(W) * low(Econ), top_level = 999) ## Identify Pareto frontier for men's BBL bowling innings

BowlInnPareto_women <- psel(wbblbowl, high(W) * low(Econ), top_level = 999) ## Identify Pareto frontier for women's BBL bowling innings

• Pareto-optimal Bowling Career

This analysis outlined the lowest bowling average across a career at the lowest economy

and lowest strike rate. To provide a more accurate career report, bowlers required to

have bowled a minimum of 200 balls which left 137 eligible male bowlers and 98 eligible

female bowlers.
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BowlCarPareto_men <- psel(filtBowl_men, low(Average) * low(StrikeRate) * low(Economy), top_level = 999) %>%

filter(Average < 50) ## Identify Pareto frontier for men's BBL bowling career

BowlCarPareto_women <- psel(filtBowl_women, low(Average) * low(StrikeRate) * low(Economy), top_level = 999) %>%

filter(Average < 50) ## Identify Pareto frontier for women's BBL bowling career

All data was analyzed using R (v 4.1.0) statistical software (R Core Team, 2019). Firstly,

the dplyr (Wickham et al., 2021) and tidyr (Wickham, 2021) packages were used for data

manipulation to format the data into the correct structure to identify the Pareto frontiers.

The rPref package (Roocks, 2016) was used to determine the Pareto frontiers using the psel

function with the “top_level” argument set to 999 to ensure every athlete was assigned to a

frontier (see Line 15 of the attached script for an example). Once the frontiers were established,

the ggplot2 (Wickham, 2016) and scatterplot3D (Ligges & Mächler, 2003) packages were used

to visualize the data and subsequent Pareto frontiers.

3.4 Results

Men’s Pareto-optimal batting

As seen by the red line in Figure 3.1, 11 Pareto-optimal innings were identified as Pareto-

optimal innings. That is, no other batter has scored more runs at a faster strike rate than these

12 innings. These innings ranged from 6 runs off 1 ball (i.e., strike rate = 600) to 154 off 64 balls

(i.e., strike rate = 240.63). Additionally, the solution of 6 runs off 1 ball has been attained six

times. In Figure 3.2, nine Pareto-optimal batting careers were identified (in red) with Andre
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Russell achieving the highest strike rate (164.07) and Brad Hodge achieving the highest average

(42.78), while Joe Clarke, Alex Hales, Glenn Maxwell, Chris Lynn, Ben McDermott, Kevin

Pietersen and Mitchell Marsh were all deemed Pareto-optimal due to varying combinations of

both metrics.

3.4.0.1 Men’s Pareto Batting Innings

ggplot(mapping = aes(x = R, y = SR)) +

geom_point(data = BatInnPareto_men %>% filter(R > 50 | SR > 100), alpha=0.05, size = 3) +

geom_point(data = BatInnPareto_men %>% filter(.level == 1), alpha = 0.1, color = "red",size = 3)+

geom_text(data = BatInnPareto_men %>% filter(.level == 1 & R != 6 & !(LastName %in% c("Coulter-Nile","Rashid","Cutting","Maxwell","McAndrew"))), aes(label = LastName),color = "Red", hjust = "left",nudge_x = 2, nudge_y = 10)+

geom_text(data = BatInnPareto_men %>% filter(.level == 1 & LastName == "Rashid"), aes(label = LastName), color = "Red", hjust = "left",nudge_x = 2,nudge_y = 15)+

geom_text(data = BatInnPareto_men %>% filter(.level == 1 & LastName == "Coulter-Nile"), aes(label = LastName), color = "Red", hjust = "left",nudge_x = 2,nudge_y = 22)+

geom_text(data = BatInnPareto_men %>% filter(.level == 1 & LastName == "Cutting"), aes(label = LastName), color = "Red", hjust = "left",nudge_x = 2,nudge_y = 22)+

geom_text(data = BatInnPareto_men %>% filter(.level == 1 & LastName == "McAndrew"), aes(label = LastName), color = "Red", hjust = "left",nudge_x = 2,nudge_y = 25)+

geom_text(data = BatInnPareto_men %>% filter(.level == 1 & LastName == "Maxwell"), aes(label = LastName), color = "Red", hjust = "left",nudge_x = -10,nudge_y = 15)+

geom_line(data = BatInnPareto_men %>% filter(.level == 1), alpha = 0.5, colour = "red")+

annotate(geom = "text",x = 15,y = 600, label = "6 players", color = "red")+

scale_y_continuous(breaks = seq(100,600,100))+

coord_cartesian(xlim = c(0,160))+

theme_minimal() +

labs(x = "Runs Scored in an Innings",
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y = "Innings Batting Strike Rate") +

theme(axis.title = element_text(size = 12,face = "bold"),

panel.grid.minor.y = element_blank(),

axis.text = element_text(size = 12, color = "black"))
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Figure 3.1: Men’s Pareto-optimal batting within an innings with the Pareto frontier high-
lighted in red. N.B. For illustrative purposes, points were filtered out if both their
runs scored was below 50 and their strike rate was below 100.
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3.4.0.2 Men’s Pareto Batting Career

ggplot(BatCarPareto_men, aes(x = Average, y = StrikeRate)) +

geom_point(alpha=0.3, size = 3) +

geom_point(data = BatCarPareto_men %>% filter(.level == 1), alpha = 0.3, color = "red",size = 3)+

geom_line(data = BatCarPareto_men %>% filter(.level == 1), color = "red")+

geom_text(data = BatCarPareto_men %>% filter(.level == 1 & LastName == "Clarke"), aes(label = LastName), color = "red", hjust = "left",nudge_x = 0.6,nudge_y = 1.5)+

geom_text(data = BatCarPareto_men %>% filter(.level == 1 & LastName == "Hales"), aes(label = LastName), color = "red", hjust = "left",nudge_x = 0.6,nudge_y = 1.7)+

geom_text(data = BatCarPareto_men %>% filter(.level == 1 & LastName == "Marsh"), aes(label = LastName), color = "red", hjust = "left",nudge_x = 0.6,nudge_y = 1)+

geom_text(data = BatCarPareto_men %>% filter(.level == 1 & LastName == "McDermott"), aes(label = LastName), color = "red", hjust = "left",nudge_x = 0.6,nudge_y = 1.8)+

geom_text(data = BatCarPareto_men %>% filter(.level == 1 & LastName == "Pietersen"), aes(label = LastName), color = "red", hjust = "left",nudge_x = 0.6,nudge_y = 0.9)+

geom_text(data = BatCarPareto_men %>% filter(.level == 1 & !LastName %in% c("Clarke","Hales","Marsh","McDermott","Pietersen")), aes(label = LastName), color = "red", hjust = "left",nudge_x = 0.6)+

theme_minimal() +

coord_cartesian(xlim = c(0,46))+

labs(x = "Career Batting Average",

y = "Career Batting Strike Rate") +

theme(axis.title = element_text(size = 12,face = "bold"),

panel.grid.minor.y = element_blank(),

axis.text = element_text(size = 12, color = "black"))
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Figure 3.2: Men’s Pareto-optimal batting across a career with the Pareto frontier highlighted
in red. N.B. For illustrative purposes, points were filtered out if both their average
was below 20 and their strike rate was below 100.

Men’s Pareto-optimal bowling

Three Pareto-optimal bowling innings in Figure 3.3 were identified: 1/0 (i.e., 1 wicket for 0

runs conceded) by Jhye Richardson, 3/3 by Mitchell Johnson, and 6/7 achieved by Lasith

Malinga. While there were three occurrences of 0/0, none of these are deemed Pareto-optimal

as 1/0 by Richardson supersedes this combination. Five Pareto-optimal bowling careers were

identified in Figure 3.4 as having the best balance of bowling average, strike rate, and economy,

with Adil Rashid achieving the lowest average (14.13), Lasith Malinga achieving the lowest

economy (5.40), Mitchell Starc achieving the lowest strike rate (11.25), while Rashid Khan

and Hayden Kerr were deemed Pareto-optimal due to a combination of the three metrics.
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3.4.0.3 Men’s Pareto Bowling Innings

ggplot() +

geom_jitter(data = BowlInnPareto_men %>% filter(.level != 1),aes(x = W, y = Econ), alpha = 0.1, size = 3, width = 0.1) +

geom_point(data = BowlInnPareto_men %>% filter(.level == 1), aes(x = W, y = Econ), alpha = 0.3, shape = 21, size = 3, fill = "red", color = "red") +

geom_text(data = BowlInnPareto_men %>% filter(.level == 1), aes(x = W, y = Econ, label = LastName), color = "Red", hjust = "left",nudge_x = -0.3,nudge_y = -1)+

geom_line(data = BowlInnPareto_men %>% filter(.level == 1), aes(x = W, y = Econ), alpha = 0.5, colour = "red")+

theme_minimal() +

labs(x = "Wickets in an innings",

y = "Innings Bowling Economy") +

coord_cartesian(xlim = c(0,6.3))+

theme(axis.title = element_text(size = 12,face = "bold"),

panel.grid.minor.y = element_blank(),

axis.text = element_text(size = 12, color = "black"))
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Figure 3.3: Men’s Pareto-optimal bowling within an innings with the points on the Pareto
frontier highlighted in red.

3.4.0.4 Men’s Pareto Bowling Career

BowlCarPareto_men$color <- case_when(BowlCarPareto_men$.level == 1 ~ 2,

BowlCarPareto_men$.level > 1 ~ 1)

BowlCarPareto_men$Label[BowlCarPareto_men$.level == 1] <- BowlCarPareto_men$LastName[BowlCarPareto_men$.level == 1]

MenBowlCarParetoPlot <-scatterplot3d(BowlCarPareto_men[c("Economy","Average","StrikeRate")], type = "h",pch = 16, color=BowlCarPareto_men$color,

xlab="Career Bowling Economy",

ylab="Career Bowling Strike Rate",

zlab="Career Bowling Average")

zz.coords <- MenBowlCarParetoPlot$xyz.convert(BowlCarPareto_men$Economy, BowlCarPareto_men$Average, BowlCarPareto_men$StrikeRate)
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text(zz.coords$x,

zz.coords$y,

labels = BowlCarPareto_men$Label,

cex = .8,

pos = 2,

col = "red")
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Figure 3.4: Men’s Pareto-optimal bowling across a career with the points on the Pareto frontier
highlighted in red.

Women’s Pareto-optimal batting

Seven Pareto-optimal innings were identified in Figure 3.5 with extremities ranging from 6 runs

off 1 ball (i.e., strike rate = 600) to 114 off 52 balls (i.e., strike rate = 219.23). In Figure 3.6,

six Pareto-optimal batting careers were also identified with Laura Kimmince achieving the

highest strike rate (144.08), Ellyse Perry achieving the highest average (50.15), with other

Pareto-optimal solutions due to varying combinations of both metrics.
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3.4.0.5 Women’s Pareto Batting Innings

ggplot(BatInnPareto_women %>% filter(R > 50 | SR > 100), aes(x = R, y = SR)) +

geom_point(alpha=0.05, size = 3) +

geom_point(data = BatInnPareto_women %>% filter(.level == 1), alpha = 0.1, color = "red",size = 3)+

geom_text(data = BatInnPareto_women %>% filter(.level == 1 & !(LastName %in% c("Nitschke","Molineux","Devine","Harris"))), aes(label = LastName), color = "Red", hjust = "left",nudge_x = 2)+

geom_text(data = BatInnPareto_women %>% filter(.level == 1 & LastName == "Nitschke"), aes(label = LastName), color = "Red", hjust = "left",nudge_x = 2,nudge_y = 10)+

geom_text(data = BatInnPareto_women %>% filter(.level == 1 & LastName == "Molineux"), aes(label = LastName), color = "Red", hjust = "left",nudge_x = 2,nudge_y = 10)+

geom_text(data = BatInnPareto_women %>% filter(.level == 1 & LastName == "Devine"), aes(label = LastName), color = "Red", hjust = "left",nudge_x = 2,nudge_y = 10)+

geom_text(data = BatInnPareto_women %>% filter(.level == 1 & LastName == "Harris"), aes(label = LastName), color = "Red", hjust = "left",nudge_x = 2,nudge_y = 10)+

geom_line(data = BatInnPareto_women %>% filter(.level == 1), alpha = 0.5, colour = "red")+

scale_y_continuous(breaks = seq(100,600,100))+

coord_cartesian(xlim = c(0,125))+

theme_minimal() +

labs(x = "Runs Scored in an Innings",

y = "Innings Batting Strike Rate") +

theme(axis.title = element_text(size = 12,face = "bold"),

panel.grid.minor.y = element_blank(),

axis.text = element_text(size = 12, color = "black"))
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Figure 3.5: Women’s Pareto-optimal batting within an innings with the Pareto frontier high-
lighted in red. N.B. For illustrative purposes, points were filtered out if both their
runs scored was below 50 and their strike rate was below 100.

3.4.0.6 Women’s Pareto Batting Career

ggplot(BatCarPareto_women, aes(x = Average, y = StrikeRate)) +

geom_point(alpha=0.3, size = 3) +

geom_point(data = BatCarPareto_women %>% filter(.level == 1), alpha = 0.3, color = "red",size = 3)+

geom_line(data = BatCarPareto_women %>% filter(.level == 1), color = "red")+

geom_text(data = BatCarPareto_women %>% filter(.level == 1 & !LastName %in% c("Kimmince","Lanning","Mooney")), aes(label = LastName), color = "Red", hjust = "left",nudge_x = 0.6)+

geom_text(data = BatCarPareto_women %>% filter(.level == 1 & LastName == "Kimmince"), aes(label = LastName), color = "Red", hjust = "left",nudge_x = 0.6,nudge_y = 1)+

geom_text(data = BatCarPareto_women %>% filter(.level == 1 & LastName == "Lanning"), aes(label = LastName), color = "Red", hjust = "left",nudge_x = 0.6,nudge_y = 1.5)+

geom_text(data = BatCarPareto_women %>% filter(.level == 1 & LastName == "Mooney"), aes(label = LastName), color = "Red", hjust = "left",nudge_x = 0.6,nudge_y = -0.5)+
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coord_cartesian(xlim = c(0,53))+

theme_minimal() +

labs(x = "Career Batting Average",

y = "Career Batting Strike Rate") +

theme(axis.title = element_text(size = 12,face = "bold"),

panel.grid.minor.y = element_blank(),

axis.text = element_text(size = 12, color = "black"))
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Figure 3.6: Women’s Pareto-optimal batting across a career with the Pareto frontier high-
lighted in red. N.B. For illustrative purposes, points were filtered out if both their
average was below 20 and their strike rate was below 100.

Women’s Pareto-optimal bowling

Three Pareto-optimal bowling innings in Figure 3.7 were identified: 2/0 by Samantha Bates,
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4/2 by Jemma Barsby, and 5/8 achieved by Amanda-Jade Wellington. Six Pareto-optimal

bowling careers were identified in Figure 3.8 as having the best balance of bowling average,

strike rate, and economy, with Julie Hunter achieving both the lowest average (16.38) and

lowest economy (5.16), Harmanpreet Kaur achieving the lowest strike rate (16.00), while Sarah

Aley, Darcie Brown, Ruth Johnston, and Hannah Darlington are deemed Pareto-optimal due

to a combination of the three metrics.

3.4.0.7 Women’s Pareto Bowling Innings

ggplot(BowlInnPareto_women, aes(x = W, y = Econ)) +

geom_jitter(data = BowlInnPareto_women %>% filter(.level != 1),aes(x = W, y = Econ), alpha=0.1, size = 3, width = 0.1) +

geom_point(data = BowlInnPareto_women %>% filter(.level == 1), aes(x = W, y = Econ), alpha = 0.3, shape = 21, size = 3, fill = "red", color = "red") +

geom_text(data = BowlInnPareto_women %>% filter(.level == 1), aes(x = W, y = Econ, label = LastName), color = "Red", hjust = "left",nudge_x = -0.2,nudge_y = -1)+

geom_line(data = BowlInnPareto_women %>% filter(.level == 1), aes(x = W, y = Econ), alpha = 0.5, colour = "red")+

theme_minimal() +

coord_cartesian(xlim = c(0,5.5))+

scale_x_continuous(breaks = c(0:5))+

labs(x = "Wickets in an innings",

y = "Innings Bowling Economy") +

theme(axis.title = element_text(size = 12,face = "bold"),

panel.grid.minor.y = element_blank(),

axis.text = element_text(size = 12, color = "black"))
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Figure 3.7: Women’s Pareto-optimal bowling within an innings with the points on the Pareto
frontier highlighted in red.

3.4.0.8 Women’s Pareto Bowling Career

BowlCarPareto_women$color <- case_when(BowlCarPareto_women$.level == 1 ~ 2,

BowlCarPareto_women$.level > 1 ~ 1)

BowlCarPareto_women$Label[BowlCarPareto_women$.level == 1] <- BowlCarPareto_women$LastName[BowlCarPareto_women$.level == 1]

WomenBowlCarParetoPlot <-scatterplot3d(BowlCarPareto_women[c("Economy","Average","StrikeRate")], type = "h",pch = 16, color=BowlCarPareto_women$color,

xlab="Career Bowling Economy",

ylab="Career Bowling Strike Rate",

zlab="Career Bowling Average")

zz.coords <- WomenBowlCarParetoPlot$xyz.convert(BowlCarPareto_women$Economy, BowlCarPareto_women$Average, BowlCarPareto_women$StrikeRate)
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text(zz.coords$x,

zz.coords$y,

labels = BowlCarPareto_women$Label,

cex = .8,

pos = 2,

col = "red")
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Figure 3.8: Women’s Pareto-optimal bowling across a career with the points on the Pareto
frontier highlighted in red.

3.5 Discussion

The present study aimed to introduce Pareto frontiers to sports scientists and its application in

identifying and visualizing the most extraordinary players when considering multiple variables.

While it is intuitively recognized that multiple attributes are required for success in sport, by

identifying the Pareto frontier between these attributes is a simple, yet effective method to

identify all the players that possess an optimal balance of these attributes relative to other
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individuals in the cohort. By analyzing talent multivariately, rather than simply analyzing

multiple variables univariately, players can be deemed optimal despite not being objectively

highest in a single variable. The present study highlights that when there are conflicting

attributes that are of equal interest, the attributes should be viewed in tandem using Pareto

frontiers, or else there is a risk that the expectations of an individual to attain the highest

level in both attributes univariately may be unfeasible. This was evident in all eight Pareto

frontiers, as at least one athlete was identified in each example that was not identified as

highest ranked athlete in any metric when analyzed univariately, and yet was deemed Pareto-

optimal due to their balance in the metrics of interest. For instance, when observing the career

batting average Pareto frontier in the WBBL Figure 3.6, there is an expansive continuum of

batters that are all deemed Pareto-optimal as they each have slightly different average/strike

rate profiles.

The main advantage of Pareto frontiers highlighted in the present study is identifying athletes

who are optimal across multiple metrics even when they are not the highest ranked in any

metric. This was most evident in the MBBL where, Chris Lynn when viewed univariately, has

the 14th-highest career batting average (34.54), which is 8.24 runs per innings lower than the

highest Figure 3.2. Similarly, he has the eighth-highest strike rate, striking at 148.84 which

is 15.22 runs per 100 balls lower than the highest. However, when considering both metrics

simultaneously and visualizing these metrics, it is clear that he is one of the best batters across

the 11 seasons of the MBBL.

Pareto frontiers can also be used to provide benchmarks when conflicting attributes are both
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desirable and by analyzing these attributes in tandem, more realistic expectations can be

set for each athlete depending on whether they sit in the cartesian plane. The resulting

benchmarks can be more individualized than what can be expected when viewing metrics

univariately. Consequently, by viewing these metrics multivariately, different levels of quality

within differing squad roles can be better expressed. Pareto frontiers can be used not only for

extreme values, but can also be used to visualize the second, third, and n-th frontiers to further

interrogate where an individual lies within the cartesian space. For example, in Figure 3.5, it

was evident that there is a substantial gap between the first and second WBBL career batting

Pareto frontiers.

In this study we chose to observe batting and bowling as purely independent roles within cricket;

however, there are also avenues for Pareto frontiers to be established for all-rounders within

cricket (i.e., players that are picked for both their batting and bowling ability). However,

it should be noted that if an all-rounder Pareto frontier were to be established with both

batting average and strike rate as well as bowling average, economy, and strike rate, the

resulting five-dimensional outputs, while valid and executable, become increasingly difficult to

interpret and visualize. To do such an analysis, a factor-reduction technique such as principal

components analysis should be considered and the Pareto frontier could be built from the

extracted components (e.g., batting and bowling).

This technique could also be used to identify “maximal” efforts when multiple observations of

an individual are recorded which is common in sports science practice. For example, Duthie et

al. (2021) sought to define maneuverability by identifying the maximum tortuosity within each
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0.5 m·s−1 increment of speed and plotting the line of best fit through these points (Duthie et

al., 2021). In this instance, a Pareto frontier could have been fitted to the data to eliminate

the need for an arbitrary selection of 0.5 m·s−1 speed bins. Similarly, Morin et al. (2021)

sought to develop an in-situ acceleration-speed profile by identifying the maximum acceleration

within each 0.2 m·s−1 of speed and plotting the line of best fit through these points (Morin et

al., 2021). By using a Pareto frontier, the need for an arbitrating 3 m·s−1 threshold and 0.2

m·s−1 speed bins could have been avoided. Finally, Rudsits et al. (2018) sought to identify the

torque-cadence and power-cadence profile of cyclists by identifying maximal torque or power

values in each 5 rpm bin (Rudsits et al., 2018). If a Pareto frontier were used, the model would

not require any additional filtering to remove “non-maximal” efforts as the frontier will have

already deemed those points non-optimal.

The present study also illustrated how Pareto frontiers can be used to visualize talent in more

than 2 dimensions. For example, while Darcie Brown has the seventh-lowest bowling average,

11th-lowest economy, and the 18th-lowest strike rate (see Figure 3.8), she can be deemed a

Pareto-optimal bowler as there are no other bowlers who supersede her across all three metrics.

Similarly, in the MBBL (Figure 3.4), while Rashid Khan has the sixth-lowest average, sixth-

lowest economy and the 18th-lowest strike rate, he can be deemed a Pareto-optimal bowler as

there are no other bowlers who supersede him across all three metrics. While there will be

some correlations between the three bowling metrics (i.e., average, economy, and strike rate)

as the metrics are related (e.g., wickets taken is the denominator of average and numerator

of strike rate), visualizing the third dimension is still necessary as the reader would still need
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to multiply the x and y values to understand where they would sit in the third dimension.

This could be further expanded into higher dimensions; however, these dimensions become

increasingly difficult to visualize.

It should also be considered that there is some level of uncertainty surrounding each observation

in the career Pareto frontiers due to the differing number of observations. For example, Joe

Clarke is deemed Pareto-optimal as he is currently striking at 153.82 at an average of 28.94

after 16 innings; however, it is right to assume that it is more uncertain that he lies on the

frontier than Chris Lynn who has 100 observations. Therefore, future research could consider

providing confidence or credible intervals around the probability that an individual lies on the

Pareto frontier. Consequently, it is then feasible that a probability that an individual sits on

the first, second, or third frontier could be calculated.

While the present study used Twenty20 cricket to illustrate the power and usefulness of Pareto

frontiers, the concept can be widely applied within sports science data sets, especially when

the variables of interest are uncorrelated or negatively correlated. Pareto frontiers can still be

established between two positively correlated metrics; however, it is likely that there will be less

“hidden” athletes on this frontier as naturally the athletes who are high in one metric will be

high in the other metric. Future research should apply Pareto frontiers across different avenues

within sports performance analysis, such as repeated-sprint ability and dynamic strength index

which have multi-faceted determinants. In addition, there are many other possibilities within

sports science whereby Pareto frontiers can reveal athletes who possess the optimal balance of

the metrics of interest.
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4 The Role of Informative Priors in Bayesian

Inference

4.1 Abstract

Sporting success can be determined by the smallest margins; however, with small sample sizes,

detecting these small worthwhile effects is notoriously difficult. Consequently, the call to utilise

a Bayesian framework when conducting research to address these issues has increased recently.

This study illustrates how Bayesian models can incorporate prior information and how models

with more prior information can assist in decision making when margins are small. This study

revisits a paper published in this journal investigating the effects of �-alanine on 4-km cycling

TT performance through a randomised placebo-controlled trial with 14 trained cyclists. The

data set was analysed again in both a frequentist framework and in a Bayesian framework with

priors varying in terms of informativeness. In a frequentist framework, there was no significant

effect of �-alanine supplementation on 4-km TT performance compared to a placebo. However,

a Bayesian model with a very informative prior revealed an estimated 97.8% probability that
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�-alanine improved performance compared to a placebo, and an estimated 99.0% probability

that �-alanine supplementation improved 4-km TT performance compared to baseline. On

average, the 4-km TT time decreased by an estimated 6.64 s (-12.20 to -1.19 s), resulting in

a small (~2%) but beneficial effect that was more difficult to identify in the previous study

using frequentist statistics. While the present study demonstrates why incorporating prior

information can increase the power in small-sample research, it also reinforces that �-alanine

supplementation may be beneficial for cycling time trials of ~6 min in duration. Using prior

predictive distributions can assist researchers in understanding the informativeness of a given

prior distribution and should be reported when publishing.
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The following chapter is a copy of the submitted manuscript:
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priors: A new look at the role of �-alanine on 4-km time-trial performance in cyclists.

European Journal of Sports Science. Under review.

As co-author of the paper “The role of informative priors: A new look at the role of

�-alanine on 4-km time-trial performance in cyclists”, I confirm that Timothy Newans

has made the following contributions:

• Study concept and design

• Data analysis and interpretation

• Manuscript preparation

Name: Clare Minahan

Date: 29/03/2023

4.2 Introduction

Sports Scientists are often faced with small sample sizes and/or small effect sizes (Atkinson et

al., 2012) and, while these issues are not limited to sports-science research (Bacchetti et al.,

2011; Baldwin & Fellingham, 2013; McNeish, 2016; Nomura et al., 2011), they limit the ability

to infer changes in the population parameter from sample statistics. Consequently, there has

been on-going discussion surrounding the use of probabilistic statements within the sports-
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science community (Batterham & Hopkins, 2006; Borg et al., 2018; Mengersen et al., 2016;

Sainani, 2018; Welsh & Knight, 2015). As such, alternatives to traditional null hypothesis

statistical testing have been proposed to provide more insightful inferences in decision making

for Sports Scientists (Batterham & Hopkins, 2006). Magnitude-based inferences (MBI), a

newly-established method to provide probabilistic inference statements, gained traction quickly,

becoming highly cited, and was published in guidelines for authors for some journals (Hopkins

et al., 2009). Although MBI received early criticism (Barker & Schofield, 2008), it was still

widely adopted. More recently, additional attempts to discredit the concept of MBI were

vocalized byWelsh & Knight (2015) who provided a statistical review of the method illustrating

unacceptably high levels of Type I errors (Welsh & Knight, 2015). Next, Sainani (2018)

weighed into the statistical debate which triggered the sport-science community to critically

assess whether MBI should be accepted as a statistical method (Sainani, 2018). Throughout

all the rebuttals of MBI (Barker & Schofield, 2008; Borg et al., 2018; Mengersen et al., 2016;

Welsh & Knight, 2015), the recurring rhetoric was for Sports Scientists to adopt a ‘fully

Bayesian’ approach to provide probabilistic statements when inferring conclusions (Mengersen

et al., 2016; Welsh & Knight, 2015).

In 2016, Mengersen and colleagues (Mengersen et al., 2016), provided a worked example and

template to perform Bayesian inference in exercise- and sports-science data sets. The pa-

per clearly articulated the need for Bayesian inference for providing probabilistic statements

(Mengersen et al., 2016). A growing trend in the use of Bayesian inference in sports science

(Santos-Fernandez et al., 2019) has benefited from numerous tutorials being developed to
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provide readers with the skills in executing Bayesian analyses (Kruschke, 2014; Quintana &

Williams, 2018). Nonetheless, there is still a gap in knowledge regarding the appropriateness

and benefit of Bayesian inference for Sports Scientists (Mengersen et al., 2016).

Bayesian inference incorporates prior information (‘priors’) to curate the model and can provide

estimates with more certainty when compared with frequentist statistical analyses, particularly

when informative priors are used (Mengersen et al., 2016). For example, when considering

the mean 100-m race time of a sample of elite track sprint runners, a frequentist approach

does not impose any constraints on what would be considered realistic sprint times despite our

knowledge from extensive historical data, whereas such information can be readily incorporated

into a Bayesian approach via a prior distribution. As a result, Bayesian statistics can be more

sensitive to small, but real, differences between samples. However, as prior distributions can

be used on each parameter within a model (i.e., the intercept, coefficients, variance terms

etc.), it is difficult to decipher the interactions between these priors and may unintentionally

generate an ‘overly-informative’ prior. Consequently, by sampling parameter values from the

prior distribution, and for these parameter values, simulating data from the statistical model,

a ‘prior predictive distribution’ can be generated, which can then be compared to the a priori

likely values expected in the population to determine if the prior distributions being used are

reasonable.

In the present study, we revisited data from an experiment published in 2016 in this journal

(Bellinger & Minahan, 2016). In the study by Bellinger & Minahan (2016), fourteen highly-

trained cyclists were supplemented with either 6.4 g·day-1 of �-alanine or a placebo for 4 wk.
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They completed a 1-, 4- and 10-km time trial (TT) as well as a supramaximal cycling bout

before and after the supplementation period. Of those performance tasks, the 4-km TT was

of most interest given that the duration of the 4-km TT (~6 min) fits within the timeframe

most likely to be amenable by �-alanine supplementation (Hobson et al., 2012). However,

employing frequentist statistics, �-alanine supplementation was deemed to not significantly

alter performance when assuming a 5% significance level (p = 0.060), while a MBI approach

demonstrated that there was a 94% likelihood of a beneficial effect of �-alanine supplementation

on 4-km TT performance time. Given the shortcomings of the MBI approach (Mengersen et

al., 2016) and the discretised significance/non-significance in frequentist statistics (given a

p = 0.060 is close to the 5% significance level), we suggest that a Bayesian approach with

an informative prior distribution may provide a more precise understanding of the effects of

�-alanine supplementation in light of the small sample size.

Consequently, the authors have given permission to re-visit this study and re-analyse this

experiment using a Bayesian framework with various prior distributions to illustrate how the

different priors result in different interpretations. It is hypothesised that, when using an

informative prior, the model could show an improvement (>95% probability) in 4-km TT

performance (i.e., reduced time to complete 4 km) with �-alanine.
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4.3 Methods

Fourteen trained male cyclists (age = 24.8 ± 6.7 yr, mass = 71.1 ± 7.1 kg, VO2max = 65.4 ±

10.2 mL·kg·min−1) who were currently cycling 250-600 km·wk−1 and competing in either

local A-grade criterion or national-road series racing completed the study. For further informa-

tion regarding the testing protocol, please refer to the previous study (Bellinger & Minahan,

2016).

library(tidyverse)

library(brms)

library(tidybayes)

library(bayestestR)

library(patchwork)

set.seed(99.94)

ba_df <- read_csv("www/data/Study_3_bayesian_beta_alanine.csv") ## Read in data

ba_df <- ba_df %>%

mutate(Diff4k = `Post-4km`-`Pre-4km`) ## Calculate difference in 4km TT

To provide a reproducible example, we made the data from this study publicly available as well

as the statistical analyses. While more statistics software programs are providing access to

point-and-click Bayesian analyses (e.g., SPSS and Jamovi), the present study chose to conduct

all analyses in R for Statistical Computing (R Core Team, 2019) to demonstrate the minimal

increase in complexity to progress from frequentist linear models to Bayesian linear models.
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As the study was a randomised control trial, the �-alanine effect was assessed compared to 0

(i.e., no effect) as well as the placebo group (i.e., placebo effect). Consequently, the �-alanine

supplementation group was selected as the reference group (thus the intercept in the model

summary can show the effect compared to 0) and the placebo was selected as the alternate

treatment (thus the coefficient in the model summary can show the �-alanine effect compared

to placebo).

To compare the results of the frequentist and Bayesian frameworks, the frequentist analysis was

re-run to confirm the findings of Bellinger & Minahan (2016). This was performed using the

lm function in the base R package stats. To provide the greatest accessibility and readability

for the Bayesian analyses, the brms package was chosen due to its similarity in structure to

the typical lm formula structure. The brms package (Bürkner, 2017) provides an interface to

Stan (a very fast programming language written in C++) within R and outputs the results in

a similar format to the stats package.

## Frequentist Model

freq <- lm(Diff4k ~ Treat, data = ba_df) ## Frequentist linear model

summary(freq) ## Summary of Frequentist model

confint(freq) ## Confidence Interval of Frequentist model

The model has two regression parameters: the intercept b0 which here corresponds to the mean
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difference in 4-km times under the treatment, and b1 is the effect of the placebo relative to

the treatment, so that b0 + b1 is the mean difference in 4-km times under the placebo. Here

we consider imposing different levels of informativeness on the prior predictive distribution of

the mean response (difference in 4-km times). The prior predictive distribution of the mean

response under the treatment is equivalent to the prior distribution of b0 for this model.

Firstly, the flat priors for b0 and b1 were considered; however, as the brms package does not

allow for flat priors, a normal prior was assigned to b0 and a normal prior assigned to b1,

both with a mean of 0 and a SD of 10000 to act as an uninformative prior. For this prior

configuration, 48.6% of the prior predictive values of the mean response were theoretically

impossible under the treatment, as a 4-km TT lasting on average 360 s cannot have, on

average, an improvement of more than 360 s and, as a result, no model was built using this

prior.

## Uninformative Prior Model

pnorm(-360,0,10000) # Probability of -360 s or larger decrease in 4km TT given a mean = 0 and SD = 10,000

Consequently, the first Bayesian model (Model 1) used was built with a normal prior distri-

bution (mean = 0, SD = 72) for the mean response of both b0 and b1. Here, 1 SD (i.e., 72

s) represented a 20% improvement or decrement in performance under the treatment. The

�-alanine treatment was set as the default baseline in the model so that the intercept repre-

sented the �-alanine treatment effect (i.e., is the �-alanine treatment effect different from zero),

while the b coefficient represented the placebo level (i.e., is the �-alanine treatment effect dif-
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ferent from a placebo). The prior for the normal response standard deviation, sigma, was kept

controlled across all models to allow for consistency, in which the default-selected brms prior

was used, in this case a half t-distribution with a mean of 0 and SD of 6.3 with 3 degrees of

freedom.

## Model 1 - Vague Prior Model

mean_v <- 0 ## Set vague prior mean to 0

sd_v <- 72 ## Set vague prior mean to 72

pnorm(-100,mean_v,sd_v) + 1 - pnorm(100,mean_v,sd_v) ## Calculate probability the treatment effect is greater than 100 s

vague <- brm(Diff4k ~ Treat, iter = 10000, chains = 8, data = ba_df, seed = 99.94,

prior = c(set_prior(paste0("normal(",mean_v,",",sd_v,")"), class = "Intercept"),

set_prior(paste0("normal(",mean_v,",",sd_v,")"), class = "b"))) ## Run Bayesian linear model for Treatment effect on 4km TT with a vague prior

The second Bayesian model (Model 2) used was built with a normal prior distribution (mean

= 0, SD = 18) for both b0 and b1, with 1 SD (i.e., 18 s) representing a 5% improvement or

decrement in performance under the treatment.

## Model 2 - Informative Prior Model

mean_i <- 0 ## Set informative prior mean to 0

sd_i <- 18 ## Set informative prior SD to 18
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pnorm(-50,mean_i,sd_i) + 1 - pnorm(50,mean_i,sd_i) ## Calculate probability the treatment effect is greater than 50 s

1 - pnorm(-10,mean_i,sd_i) - (1 - pnorm(10,mean_i,sd_i)) ## Calculate probability the treatment effect is less than 10 s

informative <- brm(Diff4k ~ Treat, data = ba_df, iter = 10000, chains = 8, seed = 99.94,

prior = c(set_prior(paste0("normal(",mean_i,",",sd_i,")"), class = "Intercept"),

set_prior(paste0("normal(",mean_i,",",sd_i,")"), class = "b"))) ## Run Bayesian linear model for Treatment effect on 4km TT with an informative prior

The final Bayesian model (Model 3) was built with a normal prior distribution (mean = -10.26,

SD = 18) for b0, representing a 2.85% improvement in performance, the estimated effect of

�-alanine supplementation as outlined in the previously-completed meta-analysis (Hobson et

al., 2012). A normal prior distribution (mean = 10.26, SD = 18) was chosen for b1, with 1

SD (i.e., 18 s) to again represent a 2.85% improvement in performance because of �-alanine

supplementation.

## Model 3 - Very Informative Prior Model

mean_vi <- -10.28 ## Set very informative prior mean to -10.28

sd_vi <- 18 ## Set very informative prior SD to 18

1 - pnorm(-37.76,mean_vi,sd_vi) - (1 - pnorm(1.33,mean_vi,sd_vi)) ## Calculate probability the treatment effect is between the confidence interval seen in meta-analysis

veryinformative <- brm(Diff4k ~ Treat, data = ba_df, iter = 10000, chains = 8, seed = 99.94,

prior = c(set_prior(paste0("normal(",mean_vi,",",sd_vi,")"), class = "Intercept"),
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set_prior(paste0("normal(",-mean_vi,",",sd_vi,")"), class = "b"))) ## Run Bayesian linear model for Treatment effect on 4km TT with a very informative prior

4.4 Results

To illustrate the differences in the priors, the density curves of the prior predictive distribution

of the mean response under the treatment were constructed, which for this model, corresponds

to the prior distribution for b0. The varying prior predictive distributions for the mean effect

of �-alanine are displayed in Figure 4.1. As expected, the first two distributions are centred

around the mean of 0 with differing variances, with the third distribution displaying the same

variance as the third distribution, just left-shifted to a mean of -10.26, as specified in the

model. The density curves in Figure 4.1 show the sample space that each Bayesian model was

“constrained to”, illustrating the more-informative priors (e.g., Model 2 and Model 3).

vpriorplot <- ggplot(data.frame(x = c(-300, 300)), aes(x)) +

stat_function(fun = dnorm, n = 600, args = list(mean = mean_v, sd = sd_v)) +

geom_text(aes(x = -250, y = 0.003), label = "Vague", fontface = "bold")+

scale_x_continuous(breaks = c(seq(-300,300, by = 100)))+

theme_minimal()+

labs(y = "Density")+

theme(axis.title.x = element_blank(),

panel.grid.minor = element_blank(),

axis.title.y = element_text(size = 10, color = "black", face = "bold"),
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axis.text = element_text(size = 10, color = "black")) ## Visualise the prior predictive distribution given a vague prior

infpriorplot <- ggplot(data.frame(x = c(-300, 300)), aes(x)) +

stat_function(fun = dnorm, n = 600, args = list(mean = mean_i, sd = sd_i)) +

geom_text(aes(x = -62.5, y = 0.015), label = "Informative", fontface = "bold")+

theme_minimal()+

labs(y = "Density")+

scale_x_continuous(breaks = c(seq(-75,75, by = 25)))+

scale_y_continuous(breaks = c(seq(0,0.02, by = 0.01)))+

coord_cartesian(xlim = c(-75,75))+

theme(axis.title.x = element_blank(),

panel.grid.minor = element_blank(),

axis.title.y = element_text(size = 10, color = "black", face = "bold"),

axis.text = element_text(size = 10, color = "black")) ## Visualise the prior predictive distribution given an informative prior

vinfpriorplot <- ggplot(data.frame(x = c(-75, 75)), aes(x)) +

stat_function(fun = dnorm, n = 600, args = list(mean = mean_vi, sd = sd_vi)) +

geom_text(aes(x = -60, y = 0.015), label = "Very Informative", fontface = "bold")+

theme_minimal()+

labs(x = "Difference in 4km TT from Placebo",

y = "Density")+

scale_x_continuous(breaks = c(seq(-75,75, by = 25)))+

scale_y_continuous(breaks = c(seq(0,0.03, by = 0.01)))+
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coord_cartesian(xlim = c(-75,75),

ylim = c(0,0.022))+

theme(panel.grid.minor = element_blank(),

axis.title = element_text(size = 10, color = "black", face = "bold"),

axis.text = element_text(size = 10, color = "black")) ## Visualise the prior predictive distribution given a very informative prior

vpriorplot / infpriorplot / vinfpriorplot
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Figure 4.1: Prior predictive distributions of the mean pre-post change in 4-km time trial (TT)
difference under the �-alanine supplementation based on three prior distributions
that differ in terms of level of informativeness.

The results from the frequentist model and the three Bayesian models are displayed in Table 4.1.

In the frequentist model, at the 5% significance level, the intercept (i.e., �-alanine effect) was
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significantly different from zero (t(12) = -2.45, p = 0.031), although the coefficient (i.e., �-

alanine compared to a placebo) was not significant (t(12) = 2.08, p = 0.060), confirming

previous findings by the authors (Bellinger & Minahan, 2016). Model 3, the Bayesian model

with the very informative prior, displayed a 99.0% probability that �-alanine decreases the

mean 4-km TT time, and that this decrease was, on average, by 6.64 s.

Table 4.1: Comparison of frequentist and various Bayesian models with different priors.

Model Intercept (i.e., �-alanine effect)

Coefficient (i.e., �-alanine vs

Placebo)

Frequentist -6.47 (-12.23 to -0.72) 7.76 (-0.38 to 15.91)

Bayesian - Vague -6.46 (-12.09 to -0.84) 7.71 (-0.22 to 15.69)

Bayesian -

Informative

-6.25 (-11.73 to -0.72) 7.39 (-0.44 to 14.99)

Bayesian - Very

Informative

-6.64 (-12.20 to -1.19) 7.88 (0.30 to 15.64)

N.B. Frequentist values are presented as mean (95% confidence interval), while Bayesian values

are presented as mean (95% credible interval).

When comparing �-alanine with a placebo, there is a 97.8% probability that �-alanine improves

mean 4-km TT performance compared to a placebo. The posterior distributions of the pre-

post difference in mean 4-km TT performance from each of the three Bayesian models are

displayed in Figure 4.2.
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## Draws from posterior distribution

vagueplot <- vague %>%

spread_draws(b_Intercept,b_TreatPL) %>%

mutate(PL = b_TreatPL-b_Intercept) ## Calculate placebo effects for Model 1

informativeplot <- informative %>%

spread_draws(b_Intercept,b_TreatPL) %>%

mutate(PL = b_TreatPL-b_Intercept) ## Calculate placebo effects for Model 2

veryinformativeplot <- veryinformative %>%

spread_draws(b_Intercept,b_TreatPL) %>%

mutate(PL = b_TreatPL-b_Intercept) ## Calculate placebo effects for Model 3

## Posterior Predictive Distribution Figure

ggplot()+

geom_density(data = vagueplot, aes(x = b_Intercept), color = "red")+

geom_density(data = informativeplot, aes(x = b_Intercept), color = "darkgreen")+

geom_density(data = veryinformativeplot, aes(x = b_Intercept), color = "darkblue")+

geom_rect(aes(xmin = -18,xmax = -12,

ymin = 0.11, ymax = 0.14), fill = "white",color = "black")+

geom_text(aes(x = -15,y = 0.136), label = "Types of Priors", fontface = "bold",color = "black")+

geom_text(aes(x = -15,y = 0.129), label = "Vague", color = "red")+
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geom_text(aes(x = -15,y = 0.122), label = "Informative", color = "darkgreen")+

geom_text(aes(x = -15,y = 0.115), label = "Very Informative", color = "darkblue")+

geom_vline(xintercept = 0)+

labs(x = "Difference in 4km TT from Placebo",

y = "Density")+

theme_minimal()+

scale_x_continuous(limits = c(-18,5))+

theme(legend.position = "bottom",

axis.title = element_text(size = 12,face = "bold"),

axis.text = element_text(size = 12),

panel.grid.minor.y = element_blank())
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Figure 4.2: Posterior distributions of the mean pre-post change in 4-km time trial (TT) differ-
ence between �-alanine supplementation and placebo from three Bayesian models
with differing priors.

4.5 Discussion

This study updates the literature on the effect of �-alanine on a 4-km cycling TT performance

and outlines how informative priors can provide more meaningful statistical analyses in a

Bayesian framework compared to a frequentist framework. The present study showed that,

with the most-informative prior, there was an estimated 99.0% probability that �-alanine im-

proves the 4-km TT performance and an estimated 97.8% probability that �-alanine improves

performance more than a placebo. On average, 4-km TT performance decreased by an es-

timated 6.64 s, confirming similar findings by the authors in the previously published paper
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(Bellinger & Minahan, 2016). Consequently, it is reinforced that �-alanine supplementation is

likely to provide an ergogenic effect to maximal effort time trials with a duration of ~6 min.

While the exact mechanisms underpinning how increased carnosine contributes to improved

exercise performance requires further clarification, the ergogenic effect is likely due to enhanced

muscle contractile properties (Dutka et al., 2012; Everaert et al., 2013), and/or an increase in

intracellular buffering capacity (Baguet et al., 2010).

A main feature of the present study was the use of prior predictive distributions to ensure the

priors encapsulated the possible sample space for the mean of the response variable (in this case,

change in 4-km TT performance). While this study sought to keep the methodology simple by

only generating prior predictive distributions for the mean of the response variable, the prior

predictive distribution can often be impacted by the interaction between the different priors

(e.g., intercept, levels in conditions, variances, covariances etc.). Therefore, sampling from the

prior distribution is essential to ensure the prior predictive distribution both captures all the

practically possible values of the mean, as well as minimises practically impossible values. As

humans struggle to conceptualise probabilities (Gillies, 2000), it is helpful to visualise this

prior predictive distribution to ensure the Bayesian model does not contain too-informative

priors that unintentionally bias the model. In the first instance of using Bayesian analyses,

it is natural to start with uninformative priors in a bid to minimise the bias of running an

analysis and align as close to a frequentist framework as possible. However, by providing such

wide priors as seen in the uninformative prior, it unintentionally introduces a bias towards

unrealistic values. Consequently, providing priors based on previously published studies in
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similar populations or subject matter expert knowledge is required (Zondervan-Zwijnenburg

et al., 2017).

After visualising the prior predictive distributions of the mean for the vague and informative

models (i.e., Models 1 & 2), it is evident that more-constrained prior distributions are required

due to the elite nature of the athletes involved. That is, in the vague prior predictive distri-

bution, 16.5% of the distribution still predicted that �-alanine would, on average, affect the

4-km TT by more than 100 s. When narrowing the prior for the informative model, only 0.5%

of the distribution predicted that �-alanine would, on average, affect the 4-km TT by more

than 50 s. However, being a normal distribution, it also disadvantaged the model. As it was

centred around 0, 42.1% of the prior distribution predicted that �-alanine would not affect the

4-km TT by more than 10 s (i.e., that is the mean effect is between -10 and 10 s). This is

now deemed “too informative” as a prior meta-analysis had shown that the median effect of

�-alanine was 2.85% which would be approximately 10 s. This was evident in the resultant

models, with the coefficient reducing from the vague (7.75 s) to the informative model (7.28

s). Consequently, by translating the informative prior to a mean of -10.26 s in line with the

previous meta-analysis, 67.7% of the prior predictive distribution contained values within a

0.3% decrement in performance (1.33 s) and 10.49% improvement (37.76 s) in performance,

the two limits of the confidence interval from the meta-analysis.

When comparing the results to the frequentist model previously used, the informative priors

were able to not only show that �-alanine supplementation improved performance, but the

interpretation of the results is also more translatable than in a frequentist framework. The
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frequentist interpretation of p = 0.06 would be that, if the experiment were to be replicated

infinitely many times, there would be a 6% chance that the true population mean difference

between �-alanine and a placebo was 0, and 95% of the time, the interval (-0.38 to 15.91

s) would include the true population parameter. However, in a Bayesian framework, the

probability that �-alanine is better than a placebo can be estimated (i.e., 97.8%) and that

there is a 95% probability that the true population mean is between 0.30 to 15.64 s can also

be calculated.

While this study is only one example of how prior distributions can impact on the statistical

model in a Bayesian context, it shows researchers and Sports Scientists the process of selecting

informative priors by generating prior predictive distributions and critiquing the suitability of

those priors given the knowledge of the data being collected. Narrowing the standard deviation

of the prior distribution can adjust the prior predictive distribution to encapsulate the valid

range of values seen in the population. Similarly, by shifting the mean according to prior infor-

mation (in this case, a meta-analysis), smaller effects can be identified by utilising that prior

information. One potential risk of informative priors is that, if not specified appropriately, it

may conflict with the information provided in the data (Evans & Moshonov, 2006). This po-

tential prior-data conflict can be examined by comparing the prior and posterior distributions

and verifying that the posterior distribution does not lie in the tail of the prior. Therefore, it

is recommended to visualise both the prior and posterior distributions. There is also scope for

Bayesian models to address similar issues where coaches may only prescribe training for one

athlete. Given athletes are being observed on a daily basis (Thornton, Delaney, et al., 2019),
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utilising previous daily measurements may allow the for the assessment of individual changes

in response to a particular intervention.

The present study has demonstrated that Sports Scientists could adopt Bayesian models in

research to apply appropriately sensitive statistical methodologies when measuring small effect

sizes and small samples. The use of prior predictive distributions allows the researcher to

visualise the constraints each prior has on the model to ensure it reflects information that

may be available from domain experts or previous studies. It should also be noted, that

just because a more-informative prior is used, a significant effect may not be present in the

true population and therefore assessment that the informative priors are sound is required.

Consequently, future studies being published using a Bayesian framework should outline the

priors used for model components as well as the prior predictive distribution generated from

the prior distributions. In doing so, readers can understand the sample space prior to the

model and provides greater context for the posterior distribution to ensure transparency in

the results being produced.
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5 NRLW Movement Patterns and Match

Statistics

5.1 Abstract

As women’s rugby league grows, the need for understanding the movement patterns of the sport

is essential for coaches and Sports Scientists. The aims of the present study were to quantify

the position-specific demographics, technical match statistics, and movement patterns of the

National Rugby League Women’s (NRLW) Premiership and to identify whether there was a

change in the intensity of play as a function of game time played. A retrospective observational

study was conducted utilising global positioning system, demographic, and match statistics

collected from 117 players from all NRLW clubs across the full 2018 and 2019 seasons and were

compared between the ten positions using generalised linear mixed models. The GPS data were

separated into absolute (i.e., total distance, high-speed running distance, and acceleration load)

and relative movement patterns (i.e., mean speed, mean high speed (> 12 km·h-1), and mean

acceleration). For absolute external outputs, fullbacks covered the greatest distance (5504 m),
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greatest high-speed distance (1081 m), and most ball-carry metres (97 m), while five-eighths

recorded the greatest acceleration load (1697 m·s-2). For relative external outputs, there were

no significant differences in mean speed and mean high speed between positions, while mean

acceleration only significantly differed between wingers and interchanges. Only interchange

players significantly decreased in mean speed as their number of minutes played increased.

By understanding the load of NRLW matches, coaches, high-performance staff, and players

can better prepare as the NRLW Premiership expands. These movement patterns and match

statistics of NRLW matches can lay the foundation for future research as women’s rugby league

expands. Similarly, coaches, high-performance staff, and players can also refine conditioning

practices with a greater understanding of the external output of NRLW players.

132



The following chapter is a copy of the published manuscript:

Newans, T., Bellinger, P., Buxton, S., Quinn, K., & Minahan, C. Movement patterns

and match statistics in the National Rugby League Women’s (NRLW) Premiership.

Frontiers in Sports and Active Living. 3:618913.

As co-author of the paper “Movement patterns and match statistics in the National

Rugby League Women’s (NRLW) Premiership”, I confirm that Timothy Newans has

made the following contributions:

• Study concept and design

• Data collection

• Data analysis and interpretation

• Manuscript preparation

Name: Clare Minahan

Date: 29/03/2023

5.2 Introduction

The National Rugby League Women’s (NRLW) Premiership is the highest level of domestic

rugby league competition for women in Australia. The NRLW was introduced in 2018 involving

a three-round competition between four teams, culminating in a grand final between the two
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highest-ranked teams. The NRLW follows the international rugby league rules set by the

Rugby League International Federation with the exception that NRLW matches are 60 min

comprised of two 30-min halves, half time is 15 min, allow ten interchanges in each match, and

observe a 40/30 kick advantage.

Describing the movement patterns of a given sport lays the foundations for future research

to examine the intricacies of match play. While female soccer movement patterns have been

established as seen in a recent review (Griffin et al., 2020), Clarke and colleagues have artic-

ulated the movement patterns in both Australian-rules football (Clarke et al., 2019; Clarke

et al., 2018) and rugby sevens (Clarke et al., 2017, 2015). Similarly, a review of movement

patterns in field-based sports spanning maximal speed, high-speed thresholds and movement

patterns has been conducted in women (Hodun et al., 2016); however, the movement patterns

of players competing in elite-level women’s rugby league has been rarely explored in the sci-

entific literature (Quinn et al., 2020). With an 18% year-on-year growth in women’s rugby

league participation (National Rugby League, 2020), the NRLW Premiership is set to expand

in the number of teams over the coming years. To ensure that the level of competition does

not regress as a function of including more teams, there is a need for emerging players to be

sufficiently trained and conditioned to compete at the elite level, such as those described in

the present study.

The movements of players in the Australian women’s rugby league team during international

match-play have previously been recorded using global positioning system (GPS) technology

(Quinn et al., 2020). The findings of this initial study reported that players covered 6500 m in
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total distance, with ~500 m covered above 15 km·h-1. This study also displayed the relative

change in the intensity of match play across each half, whereby mean high speed (>12 km·h-1)

was reduced by approximately 40% from the start to the end of the first half (Quinn et al.,

2020). While backs were shown to exhibit greater absolute distance covered, there were no

significant differences in the relative distances between forwards and backs. In female soccer,

it was shown that domestic movement patterns were significantly lower than in international-

level matches (Andersson et al., 2010); however, it remains to be seen whether this is present

in rugby league. As there is a disparity in match duration from the NRLW Premiership to

international matches and as there is varying quality of opposition in women’s international

rugby league (Quinn et al., 2020) which can affect movement patterns (Hulin et al., 2015), the

proportional change in movement patterns from domestic to international rugby league may

not imitate the change seen in soccer (Andersson et al., 2010).

There is no doubt that the study by Quinn et al. (2020) provides important information

regarding the movement patterns of elite, international rugby league players. However, a

common critique in the literature when describing player movement patterns is that studies

typically only gather data from one or two teams (Glassbrook et al., 2019). By gathering

data from only a few teams, team tactics and strategy could obscure the true movement

patterns inherent across the entire competition (Glassbrook et al., 2019). As the only previous

investigation in women’s rugby league was in international rugby league and focused only on a

single team (Quinn et al., 2020), this study will examine the GPS data from the four domestic

NRLW teams during the 2018 and 2019 seasons to describe the movement patterns of elite,
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domestic women’s rugby league players. Similarly, in studies with only one or two teams, there

is usually only enough power to segregate players into three positional groups; however, there

have now been studies in men’s rugby league that have segregated players into more specific

positional groups (Delaney, Duthie, et al., 2016; Delaney et al., 2015). Therefore, in the

present study, we expand the comparisons to further quantify the effect of playing position on

the match statistics (tackles, runs, etc.) and GPS metrics (distance, velocity, acceleration).

5.3 Methods

The present study included 117 players from the four NRLW clubs (age = 26.8 ± 5.4 yr;

height = 1.68 ± 0.07 m; body mass = 76.7 ± 11.9 kg). The Griffith University Human Ethics

Committee approved this study (GU Ref No: 2019/359). There were 475 match entries as one

player did not enter the field during one match. The mean number of matches played by each

player was 4.1 ± 2.2 matches.

All match statistics and demographics (i.e., age, height, and body mass) were publicly sourced

from NRL.com. The definitions of match statistics were determined by STATS, the National

Rugby League’s statistics provider. ‘All runs’ were defined as any time the ball carrier went

into contact with a defender, ‘all run metres’ was the cumulative distance of all runs, ‘tackles’

were when the defender successfully executed a tackle, ‘missed tackles’ were when the defensive

player could not bring the attacking player to the ground or successfully complete the tackle,

and ‘tackle breaks’ were when the attacking player was able to continue running after a missed
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tackle. These five statistics were chosen by the authors to reflect the contact nature of rugby

league and, therefore, to highlight the relative position differences in these events.

The movement patterns of all players during NRLW matches were collected using 10 Hz Op-

timeye S5 GPS units (Catapult Sports, Victoria, Australia). The GPS data were routinely

collected at each match by the sport scientists at each club, while the National Rugby League

oversaw the collection, amalgamation and provision of the data sets to the authors in ‘.cpf’

form. Of the 475 match entries that had match statistics recorded, 370 were available for GPS

analysis. This discrepancy was due to several reasons, with poor satellite coverage within

the stadium being the main reason for why files were not provided to the authors for anal-

ysis. Regardless of whether an athlete’s GPS data was available, the match statistics were

still included in the analysis. Match files were segmented into halves within the proprietary

software and interchanges were recorded in the software as per the match footage and GPS

tracing. Velocity zones (V1-6) were aligned with those previously reported in women’s rugby

league (Quinn et al., 2020), with V1 set at 0 - 6 km�h-1, V2 set at 6.01 - 9 km�h-1, V3 set

at 9.01 - 12 km�h-1, V4 set at 12.01 - 15 km�h-1, V5 set at 15.01 - 18 km�h-1, and V6 set

at greater than 18 km�h-1. Acceleration load was calculated as the summation of absolute

acceleration and deceleration values across the duration of the match. Three absolute output

metrics (total distance, distance greater than 12 km�h-1 (i.e., high-speed running; HSR), and

acceleration load (Delaney, Duthie, et al., 2016)) were divided by the total time spent on the

field to calculate the mean speed (MS), mean speed when travelling >12 km·h-1 (MS12), and

mean acceleration (Delaney, Duthie, et al., 2016) respectively to represent the relative outputs.
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The term ‘absolute’ was used to describe the sum of the metric throughout a match, while

the term ‘relative’ was used when dividing the absolute metric by time. 12 km·h-1 was used

as the threshold for high-speed running to draw comparisons to the previous women’s rugby

league literature (Quinn et al., 2020).

To assess the positional differences for each tactical match statistic, GPS data metric, and the

age of each position, GLMM’s were employed. All GLMM’s were built using the lme4 package

(Bates et al., 2015) in R version 3.5.2 (R Core Team, 2019), the afex package (Singmann et

al., 2020) was used to determine significance at � = 0.05 for all analyses, the emmeans package

(Lenth, 2020) was used for pairwise comparisons, while the sjPlot package (Lüdecke, 2020) was

used for model diagnostics. The data set was arranged in ‘long form’ with each observation

for each player on a new row. After loading in the lme4 and afex packages, the first model

was built.

library(tidyverse)

library(afex)

library(effects)

library(emmeans)

library(chron)

library(sjPlot)

NRLW_match <- read_csv("www/data/Study_4_NRLW_match.csv")

options(scipen = 999)
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NRLW_match$FieldTime <- chron(times = as.character(NRLW_match$FieldTime))

NRLW_match$MeanSpeed <- NRLW_match$TD / NRLW_match$FieldTime / 24 / 60

NRLW_match$MeanHSR <- NRLW_match$HSR / NRLW_match$FieldTime / 24 / 60

NRLW_match$MeanAcc <- NRLW_match$Acc_Load / NRLW_match$FieldTime / 24 / 60

For each model, the dependent variable was the metric we were interested in explaining (‘age’,

‘tackles made’, ‘total distance’, etc.), a fixed effect of position was inserted, with random

effects of ‘player’, ‘match’, and ‘team’ inserted as well to remove the variability attributed

to these variables. Finally, the shape of the distribution was identified for each model with

most models following a Gaussian distribution except those with count data which followed a

Poisson distribution.

demo_vars <- c("Age","Height","Mass","Game_Minutes")

gps_vars <- c("TD","HSR","Acc_Load","MeanSpeed","MeanHSR","MeanAcc")

tactical_vars <- c("All_Runs","All_Run_Metres","Tackles","Missed_Tackles","Tacklebreaks")

full_model <- glmer("Variable" ~ Position + (1| Team) + (1 | Match_ID) + (1 | Player_ID), data = NRLW_match, family = "gaussian") # Build full model

Once the full model (i.e., all fixed and random effects included) was established for each depen-

dent variable, each random effect was consecutively removed to identify which random effects

were required in the model. If the Bayesian Information Criterion (BIC) was lower after remov-

ing a random effect and an analysis of variance between the full and the reduced model was

significant, it was deemed a significant contributor to the model, otherwise it would be subse-

quently dropped from that model. Once only random effects that significantly contributed to
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the model were remaining, the reduced model was deemed the most parsimonious.

reduced_model <- glmer("Variable" ~ Position + (1 | Match_ID) + (1 | Player_ID), data = NRLW_match, family = "gaussian") # Build model without random effects

anova(full_model, reduced_model) # Determine if model is significantly affected by random effects

In all models, the match ID was deemed a significant random effect, while the team that each

player competed for was not deemed a significant random effect in any of the models. Once the

reduced model was identified, the null model was established (i.e., the reduced model without

the predictor included. If the calculated Χ2 statistic from an analysis of variance between the

reduced model and the null model was significant (p < 0.05), then the predictor variable was

deemed to significantly contribute to the model.

null_model <- glmer("Variable" ~ (1 | Match_ID) + (1 | Player_ID), data = NRLW_match, family = "gaussian") # Build null model to determine if position is a significant contributor

anova(reduced_model, null_model) # Determine if model is significantly affected by position

Position_Estimates <- as.data.frame(effect("Position", reduced_model)) # Create parameter estimates based on position

Pairwise_Positions <- as.data.frame(pairs(emmeans(full_model, "Position"))) # Create pairwise comparisons between positions

To check the assumptions, the reduced model’s residuals were plotted against its fitted value

to determine if there were any patterns emerging (Harrison et al., 2018).

plot_model(reduced_model, type = "diag") # Assess model diagnostics

GLMM’s were also used to determine whether the duration of play affected the MS (i.e., players

who play shorter duration perform at a higher intensity). Due to the nature of interchange

in rugby league, some positions were more likely to play the full 60 min than other positions.
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Consequently, 93% of backs (i.e., fullbacks, wingers, and centres), 80% of halves (i.e., five-

eighths and halfbacks), 59% of second-rowers, 46% of hookers, 21% of locks, and 4% of props

played the full duration of the match. If the regression coefficient calculated was significantly

different (p < 0.05) from zero, it displayed a relationship between the amount of time played

and the relative output of the position. For the positions where there was a significant effect

of duration on MS, the slopes were reported alongside the MS.

full_model <- glmer("Variable" ~ Minutes + (1 | Match_ID) + (1 | Player), data = NRLW_match, family = "gaussian") # Build first model

summary(full_model) # Inspect fixed and random effects

null_model <- glmer("Variable" ~ (1 | Match_ID) + (1 | Player), data = NRLW_match, family = "gaussian") # Build null model to assess if minutes is a significant contributor

anova(full_model, null_model) # Determine if model is significantly affected

plot_model(full_model, type = "diag") # Assess model diagnostics

Finally, GLMM’s were used to determine the change in output in different velocity bands

across the two 30-min halves. Like the positional analysis, a full model was developed, with

non-significant random effects removed in the reduced model. An analysis of variance was

performed between the reduced model and the null model (i.e., the reduced model with ‘half’

excluded) to calculate a Χ2 statistic to determine whether there was a significant difference (p

< 0.05) in external output measures between the two halves.

NRLW_match_Halves <- read_csv("www/data/Study_4_nrlw_half.csv") # Load in half-by-half data

NRLW_match_Halves <- NRLW_match_Halves %>%

141



mutate(

AveSpeed = TotalDistance / (FieldTime * 1440),

V1Speed = V1Distance / (FieldTime * 1440),

V2Speed = V2Distance / (FieldTime * 1440),

V3Speed = V3Distance / (FieldTime * 1440),

V4Speed = V4Distance / (FieldTime * 1440),

V5Speed = V5Distance / (FieldTime * 1440),

V6Speed = V6Distance / (FieldTime * 1440),

MeanHSR = HSR / (FieldTime * 1440),

MeanAccel = Acc_Load / (FieldTime * 86400)

) # Create new speed metrics

full_model <- glmer("Variable" ~ Half + (1 | Team) + (1 | Match_ID) + (1 | Player_ID), data = NRLW_match_Halves, family = "gaussian") # Build first model

summary(full_model) # Inspect fixed and random effects

reduced_model <- glmer("Variable" ~ Half + (1 | Match_ID) + (1 | Player_ID), data = NRLW_match_Halves, family = "gaussian") # Build second model without non-significant random effects

anova(full_model, reduced_model) # Determine if model is significantly affected

reduced_model <- glmer("Variable" ~ (1 | Match_ID) + (1 | Player_ID), data = NRLW_match_Halves, family = "gaussian") # Build null model without half

anova(reduced_model, null_model) # Determine if model is significantly affected

plot_model(reduced_model, type = "diag") # Assess model diagnostics

Half_Estimates <- as.data.frame(effect("Half", full_model)) # Create parameter estimates based on half
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5.4 Results

The demographics and minutes played across each playing position are displayed in Table 5.1.

Second-row players were the tallest, while locks and hookers were the shortest. Props were

considerably heavier than all other positions, with fullbacks and hookers the lightest of the

positions. There was only one significant difference in age between the positions (Χ2 (9) =

17.59, p = 0.040), with hookers significantly older than fullbacks.

Table 5.1: Demographics and technical data of NRLW players by position

Position

Unique

Play-

ers

(n)

Match

En-

tries

(n)

Height

(cm)

Body

mass

(kg)

Age

(yr)

Game

Time

(min)

All

Run

Metres

(m)

All

Runs

(n)

Tackles

(n)

Missed

Tack-

les (n)

Tackle

Breaks

(n)

Fullback8 28 168.4

±

4.2

66.8

±

5.2

26.1

(24.9

-

27.3)

60

(60 -

60)

97.2

(82.0 -

112.4)

10.3

(8.5 -

12.5)

4.8 (1.9 -

7.7)

1.3

(0.9 -

2.0)

3.5

(2.4 -

4.7)

Winger19 56 168.0

±

5.5

69.4

±

5.0

26.6

(25.4

-

27.7)

60

(60 -

60)

66.4 a

(55.9 -

76.9)

7.5

(6.5 -

8.8)

4.1 (2.1 -

6.1)

1.3

(0.9 -

1.7)

3.1

(2.2 -

3.9)
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Position

Unique

Play-

ers

(n)

Match

En-

tries

(n)

Height

(cm)

Body

mass

(kg)

Age

(yr)

Game

Time

(min)

All

Run

Metres

(m)

All

Runs

(n)

Tackles

(n)

Missed

Tack-

les (n)

Tackle

Breaks

(n)

Centre17 56 168.3

±

6.9

71.4

±

4.4

26.2

(25.1

-

27.3)

60

(60 -

60)

82.9

(72.1 -

93.7)

9.4

(8.2 -

10.8)

9.4 b

(7.3 -

11.5)

2.0

(1.6 -

2.6)

3.0

(2.2 -

3.8)

Five-

Eighth

10 28 168.1

±

6.4

70.9

±

7.8

27.2

(26.2

-

28.3)

60

(60 -

60)

38.6 a,c

(24.4 -

52.8)

5.2 a,c

(4.1 –

6.6)

14.3 a,b

(11.6 -

16.9)

2.5

(1.8 -

3.5)

0.9 a

(-0.2 –

2.0)

Halfback8 28 168.7

±

7.1

70.8

±

11.4

26.6

(25.5

-

27.7)

60

(59 -

60)

44.8 a,c

(29.9 -

59.8)

6.3 a

(5.1 –

7.8)

12.5 a,b

(9.6 -

15.3)

3.0 b

(2.2 -

4.0)

1.5

(0.4 -

2.5)

Hooker6 28 164.5

±

6.5

67.5

±

7.0

27.6

(26.5

-

28.7)

55

(41 -

60)

42.9 a,c

(27.3 -

58.4)

5.3 a,c

(4.1 -

6.9)

26.4

a,b,c,d,e

(23.5 -

29.4)

3.4 a,b

(2.5 -

4.8)

1.1

(-0.2 -

2.4)
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Position

Unique

Play-

ers

(n)

Match

En-

tries

(n)

Height

(cm)

Body

mass

(kg)

Age

(yr)

Game

Time

(min)

All

Run

Metres

(m)

All

Runs

(n)

Tackles

(n)

Missed

Tack-

les (n)

Tackle

Breaks

(n)

Prop 23 56 171.1

±

6.2

90.6

±

8.5

27.0

(26.0

–

28.0)

35

(30 -

39)

69.8

a,d

(59.9 -

79.7)

7.4

(6.4 -

8.6)

16.1

a,b,c,f

(14.3 -

17.9)

1.6 f

(1.2 -

2.1)

1.1

a,b,c

(0.4 –

1.9)

Second

Row

15 56 171.6

±

6.2

81.5

±

6.8

26.8

(25.8

-

27.9)

60

(53 -

60)

65.1 a

(54.6 -

75.6)

8.0

(6.9 –

9.3)

17.8

a,b,c,f

(15.8 -

19.8)

2.6 b

(2.0 -

3.2)

2.6

(1.8 –

3.3)

Lock 9 28 164.4

±

8.2

75.4

±

4.8

27.0

(26.0

-

28.1)

44

(37 -

55)

53.2 a,c

(39.0 -

67.5)

7.2

(5.9 -

8.9)

22.9

a,b,c,d,e,g,h

(20.3 -

25.5)

3.2

a,b,g

(2.4 -

4.4)

2.3

(1.2 –

3.4)

Interchange48 111 167.5

±

7.1

80.2

±

13.4

26.9

(25.9

–

28.0)

24

(18 -

33)

47.7

a,c,g

(40.7 -

54.6)

5.5

a,b,c,g,h

(4.9 -

6.2)

11.9

a,b,f,g,h,i

(10.6 -

13.2)

1.6

e,f,i

(1.3 -

2.0)

1.7

(1.2 –

2.3)
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N.B. All values are displayed as mean (95% CI) except height and body mass are displayed as

mean ± SD and game time which is median (IQR), superscript indicates significantly different

from afullback, bwinger, ccentre, dfive-eighth, ehalfback, fhooker, gprop, hsecond-row, ilock (p

< 0.05).

Table 5.1 also displays the tactical match statistics for each playing position. Most of the

backs, halves, and second-row players completed the full 60 min of match play. Fullback

players recorded the most runs (Χ2 (9) = 50.64,< 0.001), run metres (Χ2 (9) = 49.96, p <

0.001), and tackle breaks (Χ2 (9) = 32.81, p < 0.001), while hookers recorded the most tackles

(Χ2 (9) = 153.02, p < 0.001).

Table 5.2: External workload in the NRLW by player position

Position

Mean

Speed

by

Minutes

Mean

Speed

(m·min-1)

Mean

High

Speed

(m·min-1)

Total

Distance (m)

High-Speed

Running

(>12

km�h-1) (m)

Acceleration

Load

(m·s-2)

Mean

Accelera-

tion

(m·s-3)

Fullback - 80.1

(75.4 -

84.8)

15.3

(12.1 -

18.6)

5504.3

(5008.4 -

6000.3)

1080.5

(915.4 -

1245.6)

1529.9

(1373.8 -

1686.1)

0.37

(0.34 -

0.40)

Winger - 75.5

(71.8 -

79.3)

13.1

(10.4 -

15.8)

5133.5

(4763.1 -

5503.8)

916.1 (780.3

- 1052.0)

1548.9

(1433.9 -

1663.8)

0.38

(0.35 -

0.40)
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Position

Mean

Speed

by

Minutes

Mean

Speed

(m·min-1)

Mean

High

Speed

(m·min-1)

Total

Distance (m)

High-Speed

Running

(>12

km�h-1) (m)

Acceleration

Load

(m·s-2)

Mean

Accelera-

tion

(m·s-3)

Centre - 75.9

(72.3 -

79.6)

13.5

(10.9 -

16.2)

5116.4

(4759.9 -

5472.9)

882.3 (749.0

- 1015.6)

1582.2

(1471.5 -

1692.8)

0.39

(0.37 -

0.42)

Five-

Eighth

- 79.8

(75.3 -

84.3)

13.3

(10.3 -

16.3)

5243.8

(4754.4 -

5733.3)

883.3 (725.1

- 1041.5)

1697.1

(1544.5 -

1849.8)

0.42

(0.39 -

0.45)

Halfback - 80.5

(76.1 -

84.9)

14.3

(11.4 -

17.2)

5212.0

(4741.2 -

5682.7)

900.0 (745.0

- 1055.1)

1593.0

(1445.8 -

1740.1)

0.41

(0.39 -

0.44)

Hooker -0.18

(-0.41 -

0.12)

82.7

(77.5 -

87.9)

15.2

(11.7 -

18.7)

4844.5 (4289

- 5400)

817.4 (636.3

- 998.5)

1472.1

(1296.2 -

1648.1)

0.42

(0.39 -

0.45)

Prop -0.11

(-0.37 -

0.16)

78.6

(75.1 -

82.1)

13.4

(11.0 -

15.8)

2908.1

a,b,c,d,e,f

(2557.4 -

3258.9)

431.9

a,b,c,d,e,f

(304.9 -

558.8)

886.7

a,b,c,d,e,f

(779.4 -

994.0)

0.41

(0.39 -

0.43)
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Position

Mean

Speed

by

Minutes

Mean

Speed

(m·min-1)

Mean

High

Speed

(m·min-1)

Total

Distance (m)

High-Speed

Running

(>12

km�h-1) (m)

Acceleration

Load

(m·s-2)

Mean

Accelera-

tion

(m·s-3)

Second-

Row

-0.12

(-0.31 -

0.06)

78.0

(74.3 -

81.6)

12.7

(10.2 -

15.1)

4627.2 g

(4270.6 -

4983.8)

692.6 a,b,g

(562.6 -

822.6)

1361.7 d,g

(1251.8 -

1471.6)

0.39

(0.37 -

0.41)

Lock -0.22

(-0.53 -

0.16)

78.4

(74.0 -

82.9)

13.9

(11.1 -

16.8)

4044.0

a,b,c,d,e,g

(3562.1 -

4525.9)

697.3 a,g

(542.7 -

851.8)

1227.9

b,c,d,e,g

(1078.1 -

1377.7)

0.40

(0.38 -

0.43)

Interchange-0.41*

(-0.57 -

-0.26)

80.1

(77.0 -

83.1)

14.5

(12.4 -

16.7)

2514.2

a,b,c,d,e,f,h,i

(2246.2 -

2782.3)

438.9

a,b,c,d,e,f,h,i

(326.5 -

551.3)

775.3

a,b,c,d,e,f,h,i

(695.2 -

855.4)

0.41 b

(0.40 -

0.43)

N.B. All figures are presented as mean (95% CI), - indicates insufficient data to determine

regression coefficient, * indicates sig. different from zero, superscript indicates significantly

different from afullback, bwinger, ccentre, dfive-eighth, ehalfback, fhooker, gprop, hsecond-row,

ilock (p < 0.05).

As most fullback, wing, centre, five-eighth, and halfback players completed the full 60 minutes,
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it was not necessary to determine the coefficient for the relationship between MS and minutes

played. This relationship was non-significant for hooker, prop, second-row, and lock players;

however, it was significant for interchange players (Χ2 (1) = 24.41, p < 0.001) and therefore

needed to be accounted for when calculating MS. For relative outputs, there were no significant

differences in MS (Χ2 (9) = 14.61, p = 0.102) and MS12 (Χ2 (9) = 8.04, p = 0.530), between

any of the positions, while mean acceleration (Χ2 (9) = 21.26, p = 0.012) was significantly

different between wingers and interchange. For absolute output, total distance (Χ2 (9) =

195.41, p < 0.001), HSR (Χ2 (9) = 115.16, p < 0.001), and acceleration load (Χ2 (9) = 183.14,

p < 0.001) were significantly different between positions (Table 5.2). When comparing the

first and second halves, there were no significant differences in the relative distances covered

in any of the speed zones, as well as the overall MS. The parameter estimates can be seen in

Table 5.3.

Table 5.3: Half-by-half analysis of external outputs obtained from during domestic women’s
rugby league matches

Metric 1st Half 2nd Half

Relative Total Distance (m·min-1) 79.6 (76.8 - 82.5) 79.3 (76.5 - 82.2)

Relative V1 Distance (m·min-1) 36.7 (33.0 - 40.4) 36.9 (33.2 - 40.7)

Relative V2 Distance (m·min-1) 15.1 (14.4 - 15.8) 15.0 (14.2 - 15.7)

Relative V3 Distance (m·min-1) 14.5 (12.8 - 16.1) 14.1 (12.5 - 15.8)

Relative V4 Distance (m·min-1) 7.7 (4.3 - 14.1) 7.6 (4.2 - 13.8)

Relative V5 Distance (m·min-1) 2.9 (1.6 - 5.3) 2.9 (1.6 - 5.2)
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Metric 1st Half 2nd Half

Relative V6 Distance (m·min-1) 2.0 (1.1 - 3.7) 1.8 (1.0 - 3.3)

N.B. Values presented as mean (95% CI). V1 = 0 – 6 km·h-1, V2 = 6.01 – 9 km·h-1, V3 =

9.01 – 12 km·h-1, V4 = 12.01 – 15 km·h-1, V5 = 15.01 – 18 km·h-1, and V6 = >18 km·h-1.

* indicates significantly different from the first half (p < 0.05).

5.5 Discussion

The present study describes the absolute and relative (to time) movement patterns, player

demographics, and match statistics of the 2018-2019 NRLW Premiership in Australia. With

respect to differing absolute movement patterns, backs covered between 5100 - 5500 m with

between 850 - 1100 m above 12 km·h-1, five-eighths and halfbacks covered approximately

5200 m with 900 m above 12 km·h-1, while forwards covered between 2900 - 4900 m with

between 430 - 820 m above 12 km·h-1. Similar patterns were reflected in acceleration load

where there were no significant differences between any back or halves position, while props

were significantly lower than all other starting positions. However, when comparing movement

patterns expressed relative to time, there were no significant differences in the relative distance

metrics (MS and MS12) between any of the positions. The only significant difference in relative

movement patterns was mean acceleration between wingers and interchange players. While the

absolute movement patterns display a disparity in the typical match profile across positions of
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elite women’s rugby league, the lack of difference in movement patterns relative to time means

when designing training and conditioning protocols the intensity of play is matched across all

positions and varying levels of total work is required between positions.

When assessing whether the MS changed as a function of the time on field, there were also

no significant relationships for any of the starting positions, with a decrease of 0.4 m·min-1

for each minute played in the interchange players. While this decrease may seem insignificant

practically, when comparing an interchange player competing for 10 min compared to 35 min,

it equates to a decrease of 10 m·min-1, which is approximately 13% decrease in MS. These

results reflect a similar pattern seen in the men’s game where transient fatigue was attributed

to the decline in intensity as an interchange player’s bout was prolonged (Waldron et al.,

2013). These results also display a need to further understand the role and requirement of

interchange players in women’s rugby league, similar to those explored in the men’s game

(Delaney, Thornton, et al., 2016).

When comparing relative movement patterns between domestic (i.e., the present study) and

international women’s rugby league (Quinn et al., 2020), NRLW backs covered between 75.5 -

80.1 m·min-1 compared to approximately 75 m·min-1 in international matches, NRLW halves

covered between 79.8 - 80.5 m·min-1 compared to approximately 78 m·min-1 in international

matches, and NRLW forwards covered between 78.0 - 82.7 m·min-1 compared to approxi-

mately 71 m·min-1 in international matches. This contradicts figures seen in other codes of

football played by women, with female soccer players recording a higher intensity when playing

at the international level compared to at the domestic level (Andersson et al., 2010). These
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comparisons show that while the backs and halves roughly display similar MS, it is evident

that forwards in the shorter-duration NRLW may maintain their output better than in the

longer-duration international level. Conversely, it could be that the international players did

not require as high output as they were of a higher quality than their opponents (Hulin et al.,

2015).

While the values for MS and MS12 for the full match were comparable to Quinn et al. (2020)

(who also found no significant differences in the 80-min players between any of the positions),

when comparing half-to-half (Table 5.3), Quinn et al. (2020) found a significant decline in

certain velocity bands from the first to second half, where the present study showed no such

difference. This could be due to the differing inclusion criteria where Quinn et al. (2020) only

included those playing the full 80-min in the half-to-half comparison. The MS in the present

study was still lower than those seen in other sports played by women (Hodun et al., 2016),

which could be attributed to the energetic demand of the tackling nature of rugby league

which is not present in sports such as soccer and hockey. Although, the MS was higher than

that recorded in women’s rugby union (Suarez-Arrones et al., 2014) which would feasibly be

the most similar sport code, which reflects the difference in movement patterns between men’s

rugby league (Cummins et al., 2018) and rugby union (M. Jones et al., 2015). However, due to

the low threshold for mean high speed (i.e., 12 km·h-1), it is difficult to compare high-intensity

efforts to other sports (Hodun et al., 2016). While the mean high-speed threshold was chosen to

make direct comparisons with international women’s rugby league, further investigations could

use higher intensity thresholds to further interrogate the differences in movement patterns with
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other sports.

Another noteworthy finding was the unique characteristics of the lock position. While locks

within modern men’s rugby league are most commonly paired with second-rowers (i.e., the

back row) or with props (i.e., the ‘middle forwards’) (Glassbrook et al., 2019), the present

study showed that locks in NRLW were different in their role. NRLW locks were, on average,

8 and 7 cm shorter than second-rowers and props respectively, weighed 6.1 and 15.2 kg less

respectively, ran for 11.9 and 16.8 m less with the ball respectively, and made 5.1 and 6.8

more tackles respectively. Consequently, these findings reinforce the limitations in simply

transferring male rugby league conditioning research into the female game (Emmonds et al.,

2019).

The data from the present study is crucial as it is the first week-by-week examination of

women’s rugby league. Quinn et al. (2020) provided an overview of the movement patterns of

the Australian Women’s Rugby League team during international competition (Quinn et al.,

2020); however, these movement patterns could be adversely affected by cumulative fatigue,

as previously seen in male rugby league (R. Johnston et al., 2013). As the NRLW Premier-

ship expands, it will conceivably shift from a semi-professional to a professional competition

enabling players to commit full-time to their career in rugby league. This shift, with players

unconstrained by holding secular jobs, may also see the movement patterns of NRLW match

play increase above the values seen in this study.

Another notable feature of the present study was the dissemination of knowledge, skills, and

awareness around the use of the mixed models for sports science practitioners. As noted
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in a recent call to Sports Scientists (Sainani et al., 2021), there is a growing need for Sports

Scientists to be familiar with statistical methods that can properly account for variation within

their data sets. While the requirement to account for repeated measures and missing data is

pertinent in longitudinal GPS movement pattern studies, it is still lacking within a substantial

proportion of the sports science community. For instance, in a recent systematic review of

rugby league (Dalton-Barron et al., 2020), only seven of the 15 studies correctly accounted

for the repeated observations within GPS data sets. Throughout this study, the authors have

highlighted the importance of using appropriate statistical modelling for repeated measures of

individuals and teams in longitudinal data sets. We explained the methodology and application

of a GLMM as well as provide the relevant computer scripts required to perform a GLMM. We

anticipate that this approach will increase the transparency and reproducibility of the findings,

as well as encourage statistical literacy for Sports Scientists.

5.6 Conclusion

This study was the first study to describe the movement patterns and match statistics in

domestic elite-level women’s rugby league. Two seasons of the NRLW Premiership (13 matches)

were analysed, with all clubs contributing to the data set. While backs and halves covered

significantly greater absolute distances than forwards, the relative distances covered were not

different across any of the positions. The lock position was also a substantially different

position to men’s rugby league. This study also provided more clarity on the application

of mixed models for sports science data sets, with a specific focus on team-sport data with
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repeated observations.
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6 Bayesian Approximation of the Pareto

Frontier

6.1 Abstract

Elite team sports are challenged by the need to possess multiple, often conflicting, athlete

characteristics (e.g., sprint ability and endurance) to maximise match running performance

and tactics. Univariate analysis of athlete characteristics is commonplace in sports science

whereby speed is typically evaluated independently of endurance. While this methodology

readily identifies athletes excelling in either speed or endurance, it fails to highlight athletes

who possess ‘the best compromise’ in speed and endurance. This study presents an innovative

approach to evaluating running intensity during short (10 s; anaerobic power/speed) and

long (20 min; aerobic power/endurance) periods during football matches by using the Pareto

frontier to visualize athlete characteristics simultaneously. Importantly, this study was the first

to quantify the uncertainty around the Pareto frontier, using samples drawn from the Bayesian

posterior distribution of both rolling averages to calculate the probability an athlete sits on
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the true population Pareto frontier. The 10-s and 20-min rolling averages were calculated

(325.1 and 104.7 m·min-1, respectively) for 18 elite female footballers across three seasons

using a Bayesian mixed model. No linear relationship between the two periods was identified

when considering the entire sample (n = 18, r = 0.03). However, a moderate negative linear

relationship was observed when only considering athletes that were on the first three (i.e., outer

most) Pareto frontiers (n = 12, r = -0.49). The Pareto frontier provides coaches with a holistic

view of their athletes’ speed and endurance capabilities and enables a more informed decision

when identifying the athletes with the optimal balance of these polarizing attributes.
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The following chapter is a copy of a manuscript in preparation:

Newans, T., Bellinger, P., Drovandi, C., Griffin, J. & Minahan, C. Bayesian approx-

imation of the trade-off relationship between running intensity measured during short

and long periods using Pareto frontiers. In preparation.

As co-author of the paper “Bayesian approximation of the trade-off relationship be-

tween running intensity measured during short and long periods using Pareto fron-

tiers”, I confirm that Timothy Newans has made the following contributions:

• Study concept and design

• Data collection

• Data analysis and interpretation

• Manuscript preparation

Name: Clare Minahan

Date: 29/03/2023

6.2 Introduction

Many team-based ball sports (e.g., soccer, rugby, Australian football) comprise intermittent

high-intensity locomotion (i.e., high-speed running and sprinting) interspersed among contin-

uous low-intensity locomotion (Coutts et al., 2010; Deutsch et al., 2007; Newans et al., 2021;
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Stølen et al., 2005). Defined ‘speed zones’ (km/h) have been previously used to examine

the total number of efforts or the total distance covered by an athlete at various locomotive

intensities across a match (Cummins et al., 2013; Dalton-Barron et al., 2020; Quinn et al.,

2020). However, by simply aggregating the number of efforts or total distance performed

within each speed zone, Sports Scientists were unable to identify the most intense period of a

match, making it difficult to prescribe match-specific training interventions (Mohr et al., 2003).

In recent years, new analysis techniques, such as the rolling-average method (Delaney et al.,

2015; Varley et al., 2012), have been used to quantify the locomotive intensity of athletes more

precisely during match play expressing intensity as distance covered per minute (i.e., m/min

(Cunningham et al., 2018)). Indeed, rolling-average analyses can quantify athletes’ locomotive

intensity over both short (e.g., < 1 min) and long (e.g., > 10 min) intervals which provide

sophisticated data about each athlete’s unique running ability which in turn can assist sports

scientists and conditioning coaches in prescribing individualized match-specific training inter-

ventions (Delaney et al., 2015; Fereday et al., 2020). While new metrics have been devised to

calculate the metabolic costs of both these tasks (Brown et al., 2016; Buchheit et al., 2015),

little consideration has been given to which task is the larger contributor toward these new

metrics for athletes with differing movement patterns. Despite the documented usefulness of

independently quantifying duration-specific running intensities in athletes during match play

(Delaney et al., 2015; Fereday et al., 2020), there may be a trade-off or compromise between

the running performance during short and long periods that remains unexplored.

It is true that athletes who possess a high maximal anaerobic power (i.e., speed) are unlikely to
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also possess a high aerobic power (i.e., endurance) (McKay et al., 2021) when compared with

other elite athletes. Therefore, it is reasonable to assume that elite team-sport athletes who can

maintain a relatively high intensity during short locomotive efforts (e.g., <1 min) will be unable

to maintain a relatively high intensity over long locomotive efforts (e.g., >10 min), and vice

versa. While univariate statistics can easily identify athletes at both extremes (i.e., those with

high speed or high endurance profiles), it is more difficult to ascertain athletes who are uniquely

proficient at both, possessing the best compromise between speed and endurance. No previous

statistical approach has been used in sports science to meaningfully identify the ‘extreme

all-rounder’ of short- and long-duration running performance in elite team-sport athletes.

Presented with a similar quandary in T20 cricket, whereby the number of runs scored per

dismissal (i.e., batting average) and the rate at which the athlete scores runs relative to the

number of balls faced (i.e., batting strike rate) are negatively correlated (Newans, Bellinger, &

Minahan, 2022). We utilised Pareto frontiers to: i. Athletes with the highest batting average, ii.

Athletes with the highest strike rate, and iii. Athletes possessing the best compromise between

batting average and strike rate (Newans, Bellinger, & Minahan, 2022). Indeed, Pareto frontiers

are a relatively new statistical approach to analyzing sports science data that may assist in

the identification of athletes who are not necessarily specialists in one metric but possess the

best compromise on two or more opposing abilities.

However, when dealing with longitudinal data sets such as locomotive movement patterns,

the uncertainty around an athlete’s movement patterns when each athlete has multiple ob-

servations needs to be accounted for (Newans, Bellinger, Drovandi, et al., 2022). In this in-
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stance, mixed models are required to account for this longitudinal data set (Newans, Bellinger,

Drovandi, et al., 2022) and the regression framework also allows the model to adjust for other

variables in the data. Furthermore, when executing the mixed model in a Bayesian framework,

the probability of an athlete being a member of the Pareto frontier for each athlete by resam-

pling from the posterior distribution of the athletes’ effects can be estimated. While Bayesian

Pareto frontiers have previously been explored in portfolio construction in economics (Bauder

et al., 2021), we do not believe that Bayesian Pareto frontiers have been constructed while

accounting for the uncertainty due to the repeated-measures nature of the data.

Therefore, in the present study, we analyse running intensities in short- (i.e., 10 s) and long-

(i.e., 20 min) efforts during match play to identify athletes at both extremes as well as athletes

possessing the best compromise between running intensity over short and long durations. To

accommodate multiple observations from each athlete, this study proposes to use a mixed

model within a Bayesian framework to quantify the uncertainty around each athlete’s locomo-

tion. Specifically, Pareto frontiers generated from the posterior distribution of each running

intensity were established to highlight the trade-off nature between the two intensities, having

accounted for uncertainty through a Bayesian mixed model.

6.3 Methods

The locomotive activities of eighteen female football athletes competing in the Australian

women’s domestic football league were analysed. All athletes were from the same team and
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thirty-three matches across three seasons (2017-2019) were analysed. Only data where an

athlete completed the full match (i.e., 90-min) was included in the study. A minimum of three

matches was required for each athlete to ensure that the means were not too heavily impacted

by individual match demands. Goalkeepers were excluded from the data set due to their

vastly different locomotion patterns. Collectively, there were 154 unique match files in the

data set. This study was approved by the Griffith University (GU) Human Ethics Committee

and Football Federation Australia (GU Ref: 2019/359).

Locomotion patterns were measured using 10 Hz VX GPS units (Visuallex Sport International,

Wellington, New Zealand) with the 10 Hz velocity data exported for each match file. The units

in the present study have been reported to have acceptable accuracy and both between- and

within-manufacturer reliability for quantifying locomotion patterns during team sport (Delaney

et al., 2019; Varley et al., 2012).

To summarise the locomotion patterns of each athlete, a customised R-script was used to

calculate the rolling averages. To define the high-intensity locomotion, a 10-second rolling

average was iterated over each match file to identify the peak short-duration running intensity

period, while a 20-minute rolling average was used to define the peak long-duration running

intensity period. Given the inherent variability within athletes and given the imbalanced

nature of the data set (range: 1-20 matches per athlete), mixed models were used to address

this issue (Newans, Bellinger, Drovandi, et al., 2022).
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library(tidyverse)

library(brms)

library(tidybayes)

library(rPref)

bayespareto <- read_csv("www/data/Study_5_bayesian_pareto_mm.csv") # Read in data

bayespareto <- bayespareto %>%

mutate(R10s = R10s*6,

R20m = R20m/20) # Convert distances to intensity (metres per minute)

The Pareto frontier that was to be generated was to identify the athletes in which no other

athlete is higher in both the 10-second (short duration) and 20-minute (long duration) rolling

averages. For the Pareto frontier to be generated, the means in both the running intensities

for each athlete were calculated. Consequently, a mixed model within a Bayesian framework

was employed to estimate the posterior distribution for each athlete, having accounted for

the uncertainty of each athlete’s mean based on the number of observations. As the rolling

10-second and 20-minute periods are inherently related, a bivariate model was implemented

and defined by the following equation:

⎡
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where:

• 𝑆𝑎𝑝𝑚 is the response variable for the 10-second rolling average for the 𝑎th athlete, 𝑝th

position, and 𝑚th match

• 𝐿𝑎𝑝𝑚 is the response variable for the 20-minute rolling average for the 𝑎th athlete, 𝑝th

position, and 𝑚th match

• 𝛽𝑆
0 is the intercept related to the 10-second rolling average response variable

• 𝛽𝐿
0 is the intercept related to the 20-minute rolling average response variable

• 𝛽𝑆
𝑎 is the athlete fixed effect related to the 10-second rolling average response variable

• 𝛽𝐿
𝑎 is the athlete fixed effect related to the 20-minute rolling average response variable

• 𝛽𝑆
𝑝 is the position random effect related to the 10-second rolling average response variable

• 𝛽𝐿
𝑝 is the position random effect related to the 20-minute rolling average response variable

• 𝛽𝑆
𝑚 is the match random effect related to the 10-second rolling average response variable

• 𝛽𝐿
𝑚 is the match random effect related to the 20-minute rolling average response variable

• 𝜖𝑆
𝑎𝑝𝑚 is the residual related to the 10-second rolling average response variable

• 𝜖𝐿
𝑎𝑝𝑚 is the residual related to the 20-minute rolling average response variable

The random effects are assumed to be normally distributed, 𝛽𝑆
𝑝 ∼ 𝑁(0, 𝜙𝑆

𝑝 ), 𝛽𝐿
𝑝 ∼ 𝑁(0, 𝜙𝐿

𝑝 ),

𝛽𝑆
𝑚 ∼ 𝑁(0, 𝜙𝑆

𝑚), 𝛽𝐿
𝑚 ∼ 𝑁(0, 𝜙𝐿

𝑚) where 𝜙𝑆
𝑝 , 𝜙𝐿

𝑝 , 𝜙𝑆
𝑚, 𝜙𝐿

𝑚 are variances to be estimated. The
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residuals are assumed to have a bivariate normal distribution:

⎡
⎢⎢
⎣
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𝑎𝑝𝑚
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𝑎𝑝𝑚

⎤
⎥⎥
⎦

∼ 𝑁(
⎡
⎢⎢
⎣

0

0

⎤
⎥⎥
⎦

, Σ)

where Σ is a 2x2 covariance matrix which is estimated.

The mixed model allowed for the visualisation of the estimated conditional athlete effects for

low and high intensity periods and utilised Pareto frontiers to identify the “extreme” athletes.

As some athletes played in multiple positions across the three years, position was included

as a random effect alongside the match ID to account for match-to-match variability in the

team. A normal prior with a mean of 0 and SD of 30 was set for the regression coefficients

related to both the rolling 10-second and the rolling 20-minute averages, which was derived

from the standard deviations of the ‘worst-case scenarios’ identified in prior studies utilising

rolling averages in football (Doncaster et al., 2020; Fereday et al., 2020). ‘Worst-case scenario’

analyses have recently come under scrutiny (Novak et al., 2021) to use as a prescriber for

training programs as they do not consider the psycho-physiological responses to the given

stimulus. However, there is still merit in utilising these analyses to better understand the

locomotive requirements of game play comparative to whole-match or half totals or averages

(Weaving et al., 2022).

univariate_model_R10s <- brm(R10s ~ (1|Player) + (1|Position) + (1|SeasonGame),

iter = 4000, chains = 8, data = bayespareto,
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seed = 99.94) # Build univariate model for rolling 10-second average

univariate_model_R20m <- brm(R20m ~ (1|Player) + (1|Position) + (1|SeasonGame),

iter = 4000, chains = 8, data = bayespareto,

seed = 99.94) # Build univariate model for rolling 20-minute average

multivariate_model <- brm(mvbind(R10s,R20m) ~ Player + (1|Position) + (1|SeasonGame),

iter = 8000, chains = 8, data = bayespareto,

seed = 99.94,

prior = c(set_prior("normal(0,30)", class = "b",resp = "R10s"),

set_prior("normal(0,30)", class = "b",resp = "R20m"))) # Build multivariate model for rolling 10-second and 20-minute average

While the Pareto frontier for the sample could be established from the conditional means

arising from the mixed model, the uncertainty around each athlete’s mean because of match-

to-match variability meant that other athletes could be on the ‘true’ population Pareto frontier

as well. To solve this, the multivariate mixed model was implemented in a Bayesian framework,

to allow samples to be drawn from the posterior predictive distribution of both the 10-second

and 20-minute rolling averages, in which the Pareto frontier could be generated for each sample.

To quantify the uncertainty of both the Pareto frontier, as well as the probabilities that an

athlete was on the Pareto frontier, the following steps were used:

1. Draw a data set consisting of 10-second and 20-minute rolling averages by sampling
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from the posterior predictive distribution arising from the marginal model of the fitted

Bayesian bivariate mixed model.

posterior_mean_draws <- posterior_epred(multivariate_model,

newdata = data.frame(Player = unique(bayespareto %>% arrange(Player) %>% .$Player)),

re_formula = NA)

2. From the simulated data set generated in step 1, construct the Pareto fronts, specifically

identifying the first, second, and third frontier.

combined_df <- posterior_mean_draws %>%

reshape2::melt() %>%

pivot_wider(names_from = Var3, values_from = value) %>%

rename(Sim = Var1, Athlete = Var2)

combined_df_pareto <- psel(combined_df %>% group_by(Sim), high(R10s)*high(R20m), top_level = 20) # Identify Pareto frontiers for each simulation

3. Repeat steps 1 and 2 4,000 times to generate 4,000 first, second and third Pareto frontiers.

4. Calculate the median and the central 50% interval of the posterior predictive distributions

for the first, second and third Pareto frontiers for the 20-minute rolling average across

the domain of possible rolling 10-second averages (i.e., 270, 271,…., 375 m·min-1).
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frontiers <- combined_df_pareto %>%

ungroup() %>%

group_by(Sim) %>%

filter(.level <= 3) %>%

ungroup() %>%

mutate(R10s = round(R10s / 3, 0) * 3) %>%

filter(R10s >= 270 & R10s < 375) %>%

group_by(R10s, .level) %>%

point_interval(R20m, .width = c(.50)) %>%

mutate(Frontier = case_when(.level == 1 ~ "First",

.level == 2 ~ "Second",

.level == 3 ~ "Third")) # Calculate the median and middle 50% estimate for rolling 20-minute for each interval of 10-second average smoothed to bins of 3.

5. Estimate the probability of each athlete being on the first, second, or third Pareto frontier

by dividing the frequency that an athlete appeared on the corresponding Pareto frontier

by the total number of posterior draws (i.e., 4,000 draws).

The mixed model allowed for the visualisation of the estimated athlete effects for low and high

intensity periods and utilised Pareto frontiers to identify the “extreme” athletes. As some

athletes played in multiple positions across the three years, position was included as a random

effect alongside the match ID to account for match-to-match variability in the team. A normal

prior with a mean of 0 and SD of 10 was set for the regression coefficients related to the rolling

10-second average and a normal prior with a mean of 0 and SD of 100 was set for the regression
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coefficients related to the rolling 20-minute average. Given the multivariate mixed model was

implemented in a Bayesian framework, samples can be drawn from the posterior distribution

in which the Pareto frontier can be generated for each sample. By summarising the results of

all these posterior samples, the probability of each athlete being on the Pareto front can be

estimated, thus quantifying the uncertainty.

All analysis was performed in R v4.1.1 (R Core Team, 2019). The brms package (an interface to

Stan programming language) (Bürkner, 2017), was used to calculate the posterior distributions

for each athlete, the rPref package (Roocks, 2016) was used to generate the Pareto frontiers,

and the tidyverse suite of packages were used for all data manipulation, calculation of rolling-

average blocks, and all visualisations.

6.4 Results

Using the conditional means generated from the multivariate mixed model, the average 10-

second rolling mean speed was 325.1 m·min-1 (95% Credible Interval: 304.6 - 346.1 m·min-1)

while the average 20-minute rolling mean speed was 104.7 (97.0 - 112.8) m·min-1. There was

negligible correlation between the 10-second rolling mean speed and 20-minute rolling mean

speed (r = 0.03). However, there was a moderate negative correlation between the rolling

10-second and 20-minute rolling averages for the athletes that were on the first three Pareto

frontiers (r = -0.49), which are highlighted in Figure 6.1. Four athletes were identified on the

first Pareto frontier, four athletes on the second frontier, and five athletes on the third frontier.
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The three frontiers are visualised in Figure 6.1. Athletes G & L are on the Pareto frontier

due to being the highest in the univariate analysis of 10-second rolling mean speed and 20-

minute rolling mean speed respectively, athlete M is on the Pareto frontier as 2nd-highest for

20-minute rolling mean speed and 9th-highest for 10-second rolling mean speed, while athlete

P is also on the Pareto frontier despite being 3rd-highest for 20-minute rolling mean speed and

6th-highest for 10-second rolling mean speed.

CondEffs <- conditional_effects(multivariate_model) # Extract conditional effects

R10sPlayer <- CondEffs$R10s.R10s_Player

R20mPlayer <- CondEffs$R20m.R20m_Player

df <- left_join(R10sPlayer,R20mPlayer, by = "Player", suffix = c("R10s","R20m")) # Bind conditional effects for rolling 10-second and 20-minute averages

conditional_pareto <- psel(df, high(estimate__R10s)*high(estimate__R20m), top_level=20) %>%

filter(.level <= 3) # Filter only players on the first three Pareto frontiers

ggplot(df, aes(x = estimate__R10s,y = estimate__R20m, label = Player))+

geom_point(size = 2) +

geom_line(data = conditional_pareto, aes(color = factor(.level))) +

geom_point(data = conditional_pareto, aes(color = factor(.level)), size = 2) +

scale_color_manual(values = c("darkred", "darkgreen", "darkblue")) +

geom_errorbar(aes(ymin = estimate__R20m - se__R20m, ymax = estimate__R20m + se__R20m),

alpha = 0.2) +

170



geom_errorbarh(aes(xmin = estimate__R10s - se__R10s, xmax = estimate__R10s + se__R10s),

alpha = 0.2) +

geom_text(hjust = 1.5, vjust = 1) +

theme_minimal() +

labs(x = "10-second running intensity (m/min)",

y = "20-minute running intensity (m/min)") +

theme(

legend.position = "none",

axis.title = element_text(size = 10, color = "black", face = "bold"),

axis.text = element_text(size = 10)

)
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Figure 6.1: Conditional means of a 10-second rolling average and a 20-minute rolling average
mean speed. N.B. Error bars represent the 95% credible interval.

From the multivariate mixed model, 4,000 simulated data sets were drawn from the posterior

predictive distribution of the 10-second rolling average and 20-minute rolling average mean

speed. Figure 6.2 illustrates the uncertainty around the first, second, and third Pareto frontiers

based on these 4000 posterior predictive data sets.

ggplot(data = frontiers, aes(x = R10s, y = R20m, ymin = .lower, ymax = .upper, fill = Frontier, color = Frontier)) +

geom_ribbon(alpha = 0.2, color = NA) +

geom_line(linewidth = 1, alpha = 0.8) +

scale_color_manual(values = c("darkred", "darkgreen", "darkblue")) +

scale_fill_manual(values = c("darkred", "darkgreen", "darkblue")) +
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scale_x_continuous(breaks = seq(270, 370, by = 20)) +

theme_minimal() +

labs(x = "10-second running intensity (m/min)",

y = "20-minute running intensity (m/min)") +

theme(

legend.position = "none",

axis.title = element_text(size = 10, color = "black", face = "bold"),

axis.text = element_text(size = 10)

)
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Figure 6.2: Estimation of the first three Pareto frontiers of the relationship between a 10-second
rolling average and a 20-minute rolling average mean speed. The line represents
the median Pareto frontier, while the ribbon represents the middle 50% of draws
from the posterior predictive distribution of both the 10-second rolling average and
20-minute rolling average mean speed.
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From the 4,000 simulated data sets of the 10-second rolling average and 20-minute rolling

averages, the probabilities that an individual sits on each frontier were estimated. For this

squad, the analysis is shown in Table 6.1.

combined_df_pareto %>%

ungroup() %>%

group_by(Athlete, .level) %>%

summarise(n = n() / nrow(.) * 18) %>%

pivot_wider(names_from = .level, values_from = n) %>%

mutate(Plus4 = rowSums(across(`4`:colnames(.)[ncol(.)]), na.rm = TRUE),

across(`1`:Plus4, round, 5),

across(`1`:Plus4, ~ . * 100)) %>%

select(Athlete:`3`, Plus4) ## Calculate the proportions of each athlete on each frontier

Table 6.1: Example squad analysis of the probabilities for each athlete being located on the
Pareto frontier between 10-second and 20-minute rolling averages.

Athlete 1st Frontier (%)

2nd Frontier

(%)

3rd Frontier

(%) 4th or worse Frontier (%)

A 5.4 24.0 34.1 36.5

B 30.7 28.5 19.8 20.9

C 4.6 15.3 26.0 54.2

D 0.2 2.1 8.9 88.9

E 0.0 0.1 1.4 98.5
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Athlete 1st Frontier (%)

2nd Frontier

(%)

3rd Frontier

(%) 4th or worse Frontier (%)

F 30.4 32.5 22.4 14.7

G 46.2 31.5 13.9 8.5

H 20.7 27.8 23.2 28.3

I 6.2 13.1 19.0 61.7

J 0.2 2.0 6.2 91.6

K 5.4 21.3 32.7 40.6

L 38.0 31.9 17.5 12.6

M 44.1 29.45 15.5 10.9

N 5.7 15.2 23.1 56.0

O 2.5 11.3 18.8 67.5

P 46.5 31.1 14.6 7.8

Q 33.5 27.3 18.8 20.4

R 5.3 16.6 26.7 51.4

6.5 Discussion

The present study aimed to quantify the locomotion patterns of elite-level female footballers

during matches and use Pareto frontiers to identify athletes with the highest running intensities

in both short (10 seconds) and long (20 minutes) periods in a match. When analysing the data
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univariately, there was no athlete that, on average, recorded both the highest 10-second and

20-minute rolling average windows, meaning a multivariate approach was justified to explore

the trade-off relationship. While there was no correlation between the 10-second and 20-minute

rolling average windows across the whole cohort; when considering the multivariate analysis,

there was a negative relationship between those were on the first three Pareto frontiers. The

present study also quantified the uncertainty around the Pareto frontier through a Bayesian

mixed model to provide coaches additional information for athletes with only limited data to

start individualising prescription earlier after taking the uncertainty into consideration.

Given that no athlete recorded both the highest 10-second and 20-minute rolling average

windows, a Pareto frontier consisting of four athletes (Athletes L, M, P, and G) was established.

That is, no other athlete was higher in both the 10-second and 20-minute rolling averages

than these four athletes. Although it had been hypothesised that there would be a negative

relationship between the 10-second and 20-minute rolling averages based on previous research

(Crielaard & Pirnay, 1981), no such relationship was identified. Previous research had identified

a negative relationship between the initial sprint time and the resulting RSA decrement score

(i.e., an athlete with a faster sprint speed experiences a more severe decrement) (Bishop et al.,

2001). Similarly, there is also a negative relationship between the RSA decrement score and

maximal oxygen uptake (i.e., VO2max) (i.e., an athlete with a higher VO2max experiences

a less severe decrement) (Rampinini et al., 2009). Consequently, Rampinini et al. (2009)

hypothesized that a positive relationship between initial sprint time and VO2MAX would

exist (i.e., an athlete with a faster initial sprint time would have a lower VO2MAX); curiously
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however, no significant relationship was evident (Rampinini et al., 2009). These findings are

akin to the present study where no relationship was identified between the 10-second and

20-minute rolling averages. Therefore, it is thought that a Simpson’s paradox was present in

the data, in which either the quality of an athlete or the opportunity to run is limited by

strategic or tactical decisions (Abbott et al., 2018; Hennessy & Jeffreys, 2018) which led to

no relationship being present. To test this, when looking at the relationship between only the

first three Pareto frontiers, there was indeed a negative relationship between the two running

intensities. That is, the six athletes that were not present on the first three Pareto frontiers (i.e.,

athletes located in the lower left quadrant of Figure 6.1) obfuscate the correlation between the

two running intensities due to either tactical or position constraints (i.e., limited opportunities

to perform maximal running efforts) or limited physical qualities (i.e., lower training status).

Unlike previous studies utilizing Pareto frontiers which have been purely descriptive (Gunan-

tara, 2018; Mastroddi & Gemma, 2013; Newans, Bellinger, & Minahan, 2022), the present

study extended Pareto frontiers into inferential statistics. While the predominant inferential

statistics in sports science is frequentist (Santos-Fernandez et al., 2019), the use of a Bayesian

mixed model was required to estimate the probabilities that an individual sits on each fron-

tier. The frequentist framework returns a point estimate of the model parameter, typically the

maximum likelihood estimate. In contrast, the Bayesian framework produces a posterior dis-

tribution for the model parameter, which can then be propagated into uncertainty analysis of

the Pareto frontiers by generating plausible data sets from the posterior predictive distribution

and constructing a Pareto front for each of these predictive data sets. For instance, the athlete

177



labeled “P” on Figure 6.1, while sitting on the Pareto frontier when plotting the sample data,

still only has a 47% probability that they are on the true Pareto frontier. Similarly, there is

31% probability that they are on the 2nd Pareto frontier, a 15% probability that they are on

the 3rd Pareto frontier, with only a 8% probability that they are on the 4th or higher Pareto

frontier.

This study used a mixed model within a Bayesian framework to quantify the uncertainty

around the Pareto frontier. Consequently, the probabilities that each athlete was on the Pareto

frontier could be estimated, having accounted for the uncertainty of each athlete. The approach

of generating a credible interval for the Pareto frontier to determine the probability that an

athlete sits on different frontiers was novel, with a similar approach only seen in portfolio

construction in finance (Bauder et al., 2021); however, these did not require a mixed model to

accounted for the imbalanced data like that seen in the present study. Given the variability

in the data set and with some athletes only playing a limited number of matches, the mixed

model generated large credible intervals around each of the conditional means. Consequently,

the interpretation of the conditional mean Pareto frontier is limited as there is uncertainty

whether the athlete truly lies on the population Pareto frontier. Using a Bayesian framework

allows the uncertainty to be estimated for whether an athlete sits on the Pareto frontier, as

well as calculating the uncertainty of where the Pareto frontier lies across the whole Cartesian

plane.

While the present study illustrated how to analyse the balance between the two running

intensities, the application of the statistical methods used in this study, namely, a Bayesian
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mixed model, to estimate the uncertainty around the Pareto frontier is wide-reaching and can

be used in any sporting or other context where there are conflicting attributes that are equally

desirable. By understanding which frontier an athlete is located in, coaches are provided

additional information to devise training sessions that are targeted at improving both speed

(i.e., 10 s) and endurance (i.e., 20 min) running performance that is relevant to match-specific

running intensities. Similarly, when new squad members are introduced, identification of the

various frontiers allows new squad members to be categorised into training groups with athletes

displaying a similar locomotion profile within a given position.
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7 Thesis Discussion

7.1 Interpretation of the results

Sports Scientists are inundated by data through wearables, testing equipment, motion-capture,

and with automated and semi-automated annotated match statistics. Consequently, there is a

requirement for more sports science research to focus on increasing the statistical capabilities

of Sports Scientists, to ensure that the quality of statistical analysis can match the increasing

quality of data being collected. The aim of this thesis is to provide Sports Scientists with access

to applications of statistical methods that will expand their statistical toolkit to accommodate

data sets regularly seen in a sports science context. This thesis explored mixed models for

imbalanced data sets with repeated observations where there was inherent variability between

athletes, introduced the sports science community to Pareto frontiers as a method to identify

extreme values when considering multiple variables of interest, and explored inferential statis-

tics within a Bayesian framework as an alternative to the traditional frequentist framework,

especially when working with small samples and small effect sizes. It would have been simpler
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to simulate data sets to illustrate the statistical concepts explored in this thesis; however, it

was decided that there would be some loss in authenticity and translatability into the field.

Consequently, a secondary aim of this thesis, was to produce research that furthers not only

the statistical education of the sports science community, but also contributes to the body of

research within each sports discipline explored within this thesis.

This thesis firstly highlighted the need for mixed models when examining the differing move-

ment patterns within the various levels of women’s rugby league and describing the movement

patterns and match statistics of the NRLW competition. Secondly, it highlighted the need

for Pareto frontiers to visualise the trade-off relationship within batting and bowling in T20

cricket. Next it highlighted the need for Bayesian inference when examining the effect of �-

alanine supplementation of 4-km TT performance. Finally, it highlighted the need for mixed

models, Pareto frontiers, and Bayesian inference when understanding the dynamics of short-

and long-duration specific running intensities.

One feature of this thesis was the transparency in both the code and data used within this

thesis. There has been calls for further adoption of ‘open-science practices’ over the past few

years such as Registered reports (Caldwell et al., 2020), sharing of data and code (Borg et al.,

2020). Indeed, some journals are now encouraging the use of data repositories (e.g., FigShare,

Open Science Framework) to facilitate these open-science practices; however, this is still the

minority within the sports science discipline (Borg et al., 2020). By publishing this thesis as

an eBook, it is intended that the practices shown within this thesis serve as an example just

as much as the actual code helps other researchers in performing their own analyses.
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Another area of notable interest for this thesis, was the intentional use of data from women’s

sporting codes. While there is a growth in the professionalism of women’s sport, the body

of research within each sport in the women’s game is still sparse. Consequently, this thesis

presented an opportunity in which statistical concepts could be clearly articulated using quality

data, while also addressing the inequality that is present in the frequency of publishing of

research in women’s sports. For example, prior to the start of this PhD candidature, there

were no studies in women’s rugby league examining the movement patterns at any level of

competition. Therefore, programming and prescription for athletes was derived from men’s

rugby league research with no objective justification for the translation of research. Since the

commencement of candidature, the movement patterns of women’s international rugby league,

movement patterns and match statistics of the Australian domestic NRLW competition, a

comparison of the three levels of competition in Australia, and a study of the physiological

characteristics of female rugby league players have all been published.

In Chapter 2 and Chapter 5, mixed models were able to provide insights into female rugby

league that have previously been required to be assumed based on the research previously

performed in male cohorts. By providing data relevant to the female cohorts, better decision

making by both coaches, support staff, and the league administration can be achieved with

the further knowledge elucidated by these studies. As the NRLW only contained four teams

throughout the 2018-20 seasons and was played in 60-min matches, it was necessary to un-

derstand the movement patterns to guide the expansion of the competition. At the time of

writing, the 2023 competition will feature 10 teams (National Rugby League, 2022) playing in
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70-min matches (NRL.com, 2021), of which our research has provided a baseline understanding

of the game to understand how the expansion has altered movement patterns of the athletes.

The applications of these two studies can enable coaches and support staff to better program

and prescribe training sessions suitable for these athletes, especially those recently recruited

into the expansion teams. Furthermore, these baseline results can serve as a benchmark for

lower divisions to provide information on the standards in physiology required to compete at

the NRLW level.

Pareto Frontiers were also introduced to Sports Scientists in Chapter 3 of this thesis. While

mixed models and Bayesian inference have been used, albeit somewhat uncommonly, in sports

science; as far as we are aware, Pareto Frontiers have never been used within sports science

applications. As sports are consistently focused on identifying athletes that could provide an

added edge on their opposition, they require athletes that are substantially different from the

‘average’ athlete in a given sport. This concept has been shown with the introduction of statis-

tics such as ‘wins above replacement’, ‘points above replacement’, ‘runs above replacement’,

which describe the impact a player has relative to a ‘replacement’ player (i.e., if you substi-

tuted the player for the average player in the league). Consequently, sports science research

should consider methodologies that do not revolve around only identifying the mean without

extracting the player level effects to identify the extreme athletes.

This thesis endeavoured to encourage Sports Scientists in Chapter 4 to consider adopting

inferential statistics in a Bayesian framework over the more commonly-used frequentist frame-

work. There is a pitfall created by the arbitrary statistical significance threshold of 𝛼 = 0.05
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typically seen in a frequentist framework. Due to the expected impact of a study, journals

are more likely to publish results in which a significant difference is found, than a study in

which no there were no significant findings. This generates a publication bias within sports

science journals (Borg et al., 2023) in which the distribution of published results is skewed

in favour towards those that present significant findings, leading to unintended consequences

such as p-hacking. Therefore, sports science journals should promote the use of probabilistic

statements generated from the posterior distribution of the variable of interest, resulting in

less reason to reject papers solely based upon an arbitrary cut-off of 𝛼 = 0.05.

One curious observation seen in both Chapter 3 and Chapter 6, was that variables that were

thought to be negatively correlated, were indeed positively correlated. While initially baffling,

upon further investigation after identifying each athlete, it seems that a Simpson’s paradox

was present in each case. It was known that there is a negative relationship between the initial

sprint time and the resulting repeated-sprint ability decrement score (i.e., an athlete with

a faster sprint speed experiences worse decrement) (Bishop et al., 2001). Similarly, there is

also a negative relationship between the repeated-sprint ability decrement score and maximal

oxygen uptake (VO2MAX) (i.e., an athlete with a higher VO2MAX has a less severe decrement

in repeated-sprint ability) (Rampinini et al., 2009). Consequently, there should be a positive

relationship between initial sprint time and VO2MAX (i.e., an athlete with a faster sprint speed

displays a lower VO2MAX); curiously however, no significant relationship is evident (Rampinini

et al., 2009). Similarly, when comparing sprint performance and the Yo-Yo intermittent fitness

test, there were either no correlation (Castagna et al., 2009; Lockie et al., 2017) or even positive
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relationships (Hermassi et al., 2015; Ingebrigtsen et al., 2014) found. While this has baffled

researchers in the past (Hermassi et al., 2015), this is possibly due to a Simpson’s paradox

where athletes that are more highly-trained will be higher in both attributes than less highly-

trained athletes. This is evident in one study (Ingebrigtsen et al., 2014), where athletes from

a 3rd-division team recorded slower sprint times and decreased Yo-Yo intermittent fitness test

results than a 1st-division team, yet the correlations calculated between the sprint times and

the Yo-Yo intermittent fitness results did not account for the level of competition. To illustrate

this point, some sample data was generated shown in Figure 7.1.

library(tidyverse)

library(patchwork)

set.seed(99.94)

a = c(runif(25, 60, 120), runif(25, 40, 100), runif(25, 20, 60)) ## Generate random number sequences in three groups

b = (1 / a) * c(rnorm(25, 150, 30), rnorm(25, 80, 30), rnorm(25, 10, 20)) ## Generate random correlation within the three groups

df <- data.frame(x = a,

y = b,

group = rep(c("A", "B", "C"), each = 25)) ## Form into a data frame

plot_1 <- ggplot(df, aes(x = x / 1.2, y = y * 40)) +

geom_point(size = 3, alpha = 0.5) +

geom_smooth(method = "lm",

se = F,
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linetype = "dashed",

color = "black") +

theme_minimal() +

labs(x = "Variable 1",

y = "Variable 2",

color = "Quality") +

theme(axis.text = element_blank()) ## Generate plot with no grouping

plot_2 <- ggplot(df, aes(x = x / 1.2, y = y * 40, color = group)) +

geom_point(size = 3, alpha = 0.6) +

geom_smooth(method = "lm",

se = F,

linetype = "dashed") +

theme_minimal()+

labs(x = "Variable 1",

y = "Variable 2",

color = "Quality")+

theme(legend.position = "right",

axis.text = element_blank(),

axis.title.y = element_blank()) ## Generate plot with grouping
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(plot_1 + plot_2) + plot_annotation(tag_levels = 'A') ## Combine plots
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Figure 7.1: Simpson’s paradox illustrated using sample data where a positive relationship is
evident when the whole cohort is combined (A) yet a negative relationship is evident
when the cohort is split by level of competition (B).

As seen in panel A of Figure 7.1, when the regression line is fitted across the whole cohort,

a positive correlation is present. Consequently, if these variables are positively correlated,

a Pareto Frontier may not be as useful given that it is likely that the individual that is

highest in one variable is also likely high in the other variable. However, researchers and

practitioners should be aware of other confounding variables that could influence the analysis.

For example, in panel B of Figure 7.1, if the quality of player (or level of competition) is

incorporated into the regression model, then a clear negative relationship is identified between

the two variables and the Pareto Frontier could provide useful applications across each level
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of competition (e.g., finding players with movement patterns more representing that of a

higher-level of competition). Consequently, when a relationship is unexpected (e.g., positive

relationship when expected to be negative), it is recommended that additional demographic

variables should also be tested in the regression model to ensure there is no Simpson’s paradox

and that the relationship is actually present.

7.2 Practical Applications

Even though mixed models are not new to sports science (Dalton-Barron et al., 2020), there

is still valuable data being underutilised in some studies using alternative statistical methods

(such as RM-ANOVA) that require complete data sets when dealing with longitudinal data.

This requires the need to either discard data, summarise the data (i.e., invalidly take the mean

for each participant without accounting for differing number of observations), or impute data

which has its flaws too (Borg et al., 2021). By using a mixed model instead, Sports Scientists

can retain the full data set and can provide flexibility for missing data due to injuries, squad

selection, and access to athletes on a given day.

As Pareto frontiers have not been used within sports science before, we believe the use of Pareto

frontiers is only in its infancy to identify athletes that possess the best compromise between

attributes of interest. Consequently, the applications can be wide-ranging as it is not limited

to one specific area of sports science. While this thesis predominantly framed Pareto frontiers

in a talent identification context, the applications can be more widespread. As referred to in
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Chapter 3, there have been multiple instances in the last few years (Duthie et al., 2021; Morin

et al., 2021; Rudsits et al., 2018) in which researchers have attempted to identify “maximal”

efforts when multiple observations of an individual are recorded across varying conditions of

the independent variable. To eliminate any sub-maximal efforts, a Pareto frontier can be

established to only extract the values that exhibit the best compromise between the variables

of interest.

Of particular note, Chapter 6 explored Pareto frontiers using mixed models in a Bayesian

framework, solidifying these three pillars of the thesis. As outlined as a limitation in Chapter 3,

when multiple observations are present, quantifying the uncertainty around each individual

and where they are with respect to the Pareto frontier is required. The mixed model can

account for the dependency between observations, while the Bayesian framework enables the

probability of an individual being located on the Pareto frontier can be calculated.

7.3 Further Research

While mixed models have become more common within sports science over the past five years, it

seems that the uses of the inferential statistics generated by the mixed model are still relatively

limited. However, the estimates arising from these mixed models (e.g., marginal means and

conditional means) can also be used for further applications. For example, in Chapter 6, the

estimated values from the mixed model were simulated thousands of times to estimate the

true populate Pareto frontier. By sampling from the mixed model, the random effects can be
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accounted for and can be used to simulate data sets from the model (Borg et al., 2020). This

data set can then be used for further research (e.g., building Pareto frontiers); therefore, a

mixed model does not have to be the end of the analysis; rather, can serve a specific purpose

in an analysis pipeline (in this case, providing partial pooling of estimates for an imbalanced

data set) which can facilitate further analyses later in the pipeline.

When identifying the Pareto frontiers in different data sets, it become apparent that the

shape of the frontier could differ substantially. Take, for instance, the following two Pareto

frontiers:

library(rPref)

df <- data.frame(

a = c(1, 2, 3, 4, 6, 8, 10, 6, 2, 2, 4, 2.5, 2),

b = c(10, 8, 6, 4, 3, 2, 1, 2, 6, 4, 2, 2, 2.5)

) ## Generate concave data set

df <- psel(df, high(a) * high(b), top_level = 99) ## Retrieve Pareto frontier for concave data set

plot_1 <- ggplot() +

geom_point(data = df %>% filter(.level != 1), aes(x = a, y = b)) +

geom_point(data = df %>% filter(.level == 1),

aes(x = a, y = b),

color = "red") +
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geom_line(data = df %>% filter(.level == 1),

aes(x = a, y = b),

color = "red") +

theme_minimal() +

labs(x = "Variable 1",

y = "Variable 2") +

theme(axis.text = element_blank()) ## Plot concave Pareto frontier

set.seed(99.94)

df2 <- data.frame(a = c(1, 3, 5, 6, 7, 8, 9, 10, runif(20, 0, 7)),

b = c(10, 9, 8, 7, 6, 5, 3, 1, runif(20, 0, 7))) ## Generate convex data set

df2 <- psel(df2, high(a) * high(b), top_level = 99) ## Retrieve Pareto frontier for convex data set

plot_2 <- ggplot() +

geom_point(data = df2 %>% filter(.level != 1), aes(x = a, y = b)) +

geom_point(data = df2 %>% filter(.level == 1),

aes(x = a, y = b),

color = "red") +

geom_line(data = df2 %>% filter(.level == 1),

aes(x = a, y = b),

color = "red") +
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theme_minimal() +

labs(x = "Variable 1",

y = "Variable 2") +

theme(axis.text = element_blank(),

axis.title.y = element_blank()) ## Plot convex Pareto frontier

(plot_1 + plot_2) + plot_annotation(tag_levels = 'A')
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Figure 7.2: The difference between a concave (A) and a convex (B) Pareto frontier.

The Pareto frontier is concave (as seen in panel A of Figure 7.2) if the X axis variable increases,

the Y axis variable declines sharply. Similarly, as the Y axis variable increases, the X axis

variable declines sharply. However, when the Pareto frontier is convex (as seen in panel B
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of Figure 7.2), as the X axis variable increases, there is only a gradual decline in the Y axis

variable. Additionally, as the Y axis variable increases, there is only a gradual decline in the

X axis variable.

While initially overlooked, the applications of the shape of the Frontier could be wide-reaching.

If the scatter plot features players within a team and only a limited number of athletes can

be selected from the cohort, if there are multiple athletes on the Pareto frontier it may be

difficult to decide which athletes should be selected. Consequently, in this case, it could be

argued that if the data reflected that in panel A of Figure 7.2, the athletes at the extremities

of the Pareto frontier are of greater value than those in the middle of the frontier as any gain

in one variable comes at a great cost to the opposing variable. Juxtaposing this, if the data

reflected that shown in panel B of Figure 7.2, it could be argued that athletes in the middle

of the Pareto frontier are of the highest value, as their gains in each variable have come at a

relatively low expense to the opposing variable. Further research could investigate the relative

locations within the Pareto frontier and their contributions towards the team construction.

Additionally, Pareto frontiers are only one of many approaches to multiobjective optimisation

and other methods should be explored when applying into a sports science context.

Even though Bayesian inference is not new to sports science (Mengersen et al., 2016; Santos-

Fernandez et al., 2019), there is still limited use, as well as limited resources on using Bayesian

inference in sports science contexts. In this thesis, the use of informative priors (Chapter 4)

was explored and it was shown how informative priors can assist in decision making for small

samples and small effect sizes. Further research can build on this call for informative priors by
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developing catalogs of standardised, normative reference data to use as the prior distribution

for a given variable. These databases could minimise the perceived effect of ‘biasing the prior’,

by ensuring that all studies are utilising the same prior when determining their conclusions.

One area that this thesis intentionally did not explore was the application of machine learning

techniques within a sports science context. It is noted that machine learning techniques are

changing the way data is collected, extracted, and processed (Richter et al., 2021). However,

the level of expertise required to understand these techniques may be beyond the scope of a

‘typical’ sports scientist. Within organisations, it may be that hybrid roles start to emerge

in which there is crossover between a Sports Scientist and a data scientist; however, I do

not believe that every applied Sports Scientist needs to understand and be competent to run

their own machine learning models. Consequently, Sports Scientists should endeavour to learn

general principles surrounding machine learning models to engage with data scientists that

are building these models as the frequency in which Sports Scientists will utilise software that

harness machine learning will only grow into the future. Therefore, statistical methodology

readily available to applied sport scientists was the main focus of this thesis.

7.4 Thesis Conclusion

This thesis encourages Sports Scientists to develop in their statistical literacy to ensure validity

and robustness in their statistics being presented for decision-making. As repeated-measures,

imbalanced data sets, multiple variables of interest, small samples, and small effect sizes are
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commonplace in sports science, this thesis was written to urge Sports Scientists to develop a

deeper understanding and improved competency in statistical methods. Additionally, Study 5

serves as a ‘capstone’ study, illustrating how the different statistical concepts explored in this

thesis (i.e., mixed models, Pareto frontiers, and Bayesian inference) can be used in tandem to

produce novel research. The thesis provides all the data and R code required to run all the

analyses within this thesis to ensure Sports Scientists can replicate the analyses with their own

data, as well as to provide an example to the sports science community of open and transparent

research practices. By compiling this thesis as an eBook, it is intended that Sports Scientists

can utilise these studies as a resource when conducting their own research.
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A Pareto Frontiers for Multivariate Cricket

Performance

A.1 Abstract

In Twenty20 cricket, there is a trade-off relationship between batting average and strike rate

as well as bowling strike rate, economy, and average. This study presents Pareto frontiers as

a tool to identify athletes who possess an optimal ranking when considering multiple metrics

simultaneously. 884 matches of Twenty20 cricket from the Indian Premier League were com-

piled to determine the best batting and bowling performances, both within a single innings

and across each player’s career. Pareto frontiers identified nine optimal batting innings and six

batting careers. Pareto frontiers also identified three optimal bowling and five optimal bowling

careers. Each frontier identified players that were not the highest ranked athlete in any metric

when analysed univariately. Pareto frontiers can be used when assessing talent across multiple

metrics, especially when these metrics may be conflicting or uncorrelated. Pareto frontiers can
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identify athletes that may not have the highest ranking on a given metric but have an optimal

balance across multiple metrics that are associated with success in a given sport.

The following chapter is a copy of the published manuscript:

Newans, T., Bellinger, P., & Minahan, C. Identifying multivariate cricket perfor-

mance using Pareto frontiers. MathSport Conference 2022.

As co-author of the paper “Identifying multivariate cricket performance using Pareto

frontiers”, I confirm that Timothy Newans has made the following contributions:

• Study concept and design

• Data collection

• Data analysis and interpretation

• Manuscript preparation

Name: Clare Minahan

Date: 29/03/2023

A.2 Introduction

The need to identify attributes to quantify optimal performance is evident for every sport (K.

Johnston et al., 2018). With the exception of a few single-skill sports (Rienhoff et al., 2013),

most athletes require a number of attributes to perform in their given sport. These attributes
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can encompass physical (Kelly & Williams, 2020), physiological (Dodd & Newans, 2018), men-

tal (Morris, 2000), or skill-based characteristics (Davids et al., 2000), that all can contribute

to the performance of a player. Attributes such as speed, endurance, agility, strength, power,

and accuracy are common across multiple sports (Davids et al., 2000), and each attribute can

have multiple variables seeking to quantify that attribute. As such, coaches and support staff

are consistently looking for new variables that could be used to either quantify new attributes

of interest or develop more variables to better quantify already-identified attributes with the

hope that these new variables can identify previously-hidden talent or interrogate subtle dif-

ferences between different athletes. However, with the increase in the number of attributes

of interest, the likelihood that an athlete excels in every attribute decreases. Consequently,

methods are required that can analyse multiple attributes simultaneously, rather than viewing

each attribute in isolation.

While traditional research statistical techniques focus around identifying the mean and stan-

dard deviation of a population (Hopkins et al., 2009), sports typically are not interested in

the mean during talent identification processes, rather, they are looking for outliers. That is,

coaches and support staff are looking for athletes that sit the furthest away from the mean

in the direction that success is defined. Therefore, when multiple attributes are of interest,

selection of athletes is by choosing athletes that sit the further away from the mean within

each attribute. While this process can work when variables are positively correlated, this

process can miss talent when variables are negatively correlated. For instance, at the elite

level, there is a negative correlation between maximal sprint speed and endurance capacity
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(Sánchez-García et al., 2018). However, running-based team sports require athletes possess

both speed and endurance to play at the elite level and, therefore, players necessarily need

to trade off between having optimal speed and optimal endurance. In its simplicity, if both

speed and endurance were equally required for success, selecting the top-n sprinters and the

top-n endurance runners may not be the optimal athletes for that sport.

Consequently, both attributes need to be viewed in tandem. The process of optimising the

balance of multiple attributes is termed ‘multi-objective optimisation’. Mathematically, they

aim to create the perfect balance of the attributes of interest. If a data point was defined as:

⃗𝑥1 𝜀 𝑋, it is, therefore, better than another data point defined by: ⃗𝑥2 𝜀 𝑋 if 𝑓𝑖( ⃗𝑥1) ≤ 𝑓𝑖( ⃗𝑥2) for

all metrics i 𝜀 {1, 2, …, k} and 𝑓𝑖( ⃗𝑥1) < 𝑓𝑖( ⃗𝑥2) for at least one metric j 𝜀 {1, 2, …, k}. Once

these conditions have been met, the remaining points are deemed Pareto-optimal and form

what is called the Pareto frontier.

In Twenty20 cricket, there are multiple facets within both batting and bowling that can define

success. Unlike Test cricket and, to an extent, One-Day cricket where scoring as many runs

as possible regardless of how many deliveries faced is of most importance, Twenty20 crickets

requires batters to score faster (i.e., higher strike rate) and for bowlers to concede minimal

runs which, in some cases, can come at the expense of preserving their wicket. Therefore, there

is a trade-off relationship between batting average and strike rate as well as bowling economy,

average, and strike rate within Twenty20 cricket. For example, early on in an innings the

risk-return of attempting to hit six runs off a ball is significantly different than in the final

over of an innings. Similarly, a bowler needs to balance taking wickets while also conceding as
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few runs as possible. For instance, when bowling four overs, it is again difficult to determine

whether taking three wickets for 50 runs is of more worth than taking no wickets but only

conceding eight runs as the three wickets may not have been worth conceding 50 runs. As

both attributes within each domain are of interest, Pareto frontiers can be used to determine

batters and bowlers that may not record the highest in either variable but display an optimal

balance of the two attributes. Therefore, when assessing the quality of players, it is necessary

to utilise tools that can analyse these data sets without favouring one metric over another.

Therefore, the present study aimed to use Pareto frontiers to identify the best performing

Twenty20 batters and bowlers.

A.3 Methods

The present study comprised all 884 matches of the first 14 editions of the men’s Indian Premier

League (IPL), India’s domestic T20 cricket competition. The data set contained 566 batters

and 467 bowlers. Collectively, there were 13,357 individual batting innings with observations

ranging from 1-208 innings per batter, while there were 10,925 individual bowling innings with

observations ranging from 1-180 innings per bowler.

library(tidyverse)

library(rPref)

library(patchwork)

library(scatterplot3d)
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options(scipen = 999)

iplbat <- read_csv('www/data/Study_A_pareto_iplbat.csv') # Men's batting scorecards

iplbowl <- read_csv('www/data/Study_A_pareto_iplbowl.csv') # Men's bowling scorecards

To summarise the data, two summary statistics were generated for batting and three summary

statistics were generated for bowling. The summary statistics were as follows:

• Batting Average: runs scored divided by frequency of dismissal

• Batting Strike Rate: runs scored divided by balls faced

• Bowling Average: runs conceded divided by wickets taken

• Bowling Strike Rate: balls bowled divided by wickets taken

• Bowling Economy: runs conceded divided by overs (i.e., 6 balls) bowled

dismissals <- iplbat %>%

group_by(id) %>%

filter(Dismissed == T) %>%

summarise(Dismissals = n()) ## Calculate number of dismissals

notouts <- iplbat %>%

group_by(id) %>%

filter(Dismissed == F) %>%

summarise(NotOuts = n()) ## Calculate number of not outs
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sumBat <- iplbat %>%

group_by(id, Batter, LastName) %>%

summarise(

TotalRuns = sum(R),

TotalBalls = sum(B),

Innings = n()

) %>%

ungroup() %>%

left_join(dismissals) %>%

left_join(notouts) %>%

mutate(

Dismissals = case_when(is.na(Dismissals) ~ as.integer(0),

T ~ Dismissals),

NotOuts = case_when(is.na(NotOuts) ~ as.integer(0),

T ~ NotOuts),

Average = TotalRuns / Dismissals,

StrikeRate = TotalRuns / TotalBalls * 100) ## Calculate career batting average and strike rate

filtBat <- sumBat %>%

filter(Innings >= 20) ## Filter only those with 20 or more batting innings
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sumBowl <- iplbowl %>%

group_by(id, Bowler, LastName) %>%

summarise(

Innings = n(),

Balls = sum(Balls),

Wickets = sum(W),

Runs = sum(R)

) %>%

mutate(

Average = Runs / Wickets,

Economy = Runs / Balls * 6,

StrikeRate = Balls / Wickets

) ## Calculate bowling average, economy, and strike rate

filtBowl <- sumBowl %>%

filter(Innings > 20) %>%

ungroup() ## Filter only those with more than 20 bowling innings

To understand both the batting and bowling attributes within cricket, four Pareto frontiers

for were established within the data set:

i. Pareto-optimal Batting Innings
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This analysis outlined the highest runs scored within an innings at the highest strike

rate.

BatInnPareto <- psel(iplbat %>% filter(R > 0),high(R)*high(SR),top_level = 999)

ii. Pareto-optimal Batting Career

This analysis outlined the highest batting average across a career at the highest strike rate.

To provide a more accurate career report, batters required to have played a minimum of

20 innings which left 163 eligible batters.

BatCarPareto <- psel(filtBat,high(Average)*high(StrikeRate), top_level = 999) %>%

filter(Average > 20 | StrikeRate > 100)

iii. Pareto-optimal Bowling Innings

This analysis outlined the most wickets taken in an innings at the lowest economy.

BowlInnPareto <- psel(iplbowl,high(W)*low(Econ),top_level = 999)

iv. Pareto-optimal Bowling Career

This analysis outlined the lowest bowling average across a career at the lowest economy

and lowest strike rate. To provide a more accurate career report, bowlers required to

have bowled in more than 20 matches, which left 145 eligible bowlers.
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BowlCarPareto <- psel(filtBowl,low(Average)*low(StrikeRate)*low(Economy),top_level = 999) %>%

filter(Average < 50)

The rPref package (Roocks, 2016) was used in R v 4.1.0 (R Core Team, 2019) to determine

the Pareto frontiers using the psel function with the ‘top_level’ argument set to 999 to ensure

every athlete was assigned to a frontier.

A.4 Results

Pareto-optimal Batting Innings

Nine Pareto-optimal innings were identified with extremities ranging from 6 runs off 1 ball

(i.e., strike rate = 600) to 175 off 66 balls (i.e., strike rate = 265.15). Additionally, the solution

of 6 runs off 1 ball has been attained eight times. The IPL batting innings Pareto frontier is

displayed in Figure A.1 and the batters are listed in Table A.1.

ggplot(BatInnPareto, aes(x = R, y = SR)) +

geom_point(alpha=0.1, size = 3) +

geom_text(data = BatInnPareto %>% filter(.level == 1 & R != 6 & !(LastName %in% c("de Villiers","Pollard","Russell","Pathan","Miller","Gayle"))), aes(label = LastName), color = "Red", hjust = "left",nudge_x = 2)+

geom_text(data = BatInnPareto %>% filter(.level == 1 & LastName == "de Villiers"), aes(label = LastName), color = "Red", hjust = "left",nudge_x = 2,nudge_y = 15)+

geom_text(data = BatInnPareto %>% filter(.level == 1 & LastName == "Pollard"), aes(label = LastName), color = "darkgreen", hjust = "left",nudge_x = 2,nudge_y = 5)+

geom_text(data = BatInnPareto %>% filter(.level == 1 & LastName == "Russell"), aes(label = LastName), color = "Red", hjust = "left",nudge_x = 2,nudge_y = 5)+

geom_text(data = BatInnPareto %>% filter(.level == 1 & LastName == "Pathan"), aes(label = LastName), color = "Red", hjust = "left",nudge_x = 2,nudge_y = 15)+
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geom_text(data = BatInnPareto %>% filter(.level == 1 & LastName == "Miller"), aes(label = LastName), color = "Red", hjust = "left",nudge_x = 2,nudge_y = 7)+

geom_text(data = BatInnPareto %>% filter(.level == 1 & LastName == "Gayle"), aes(label = LastName), color = "Red", hjust = "left",nudge_x = -7,nudge_y = 12)+

geom_line(data = BatInnPareto %>% filter(.level == 1), alpha = 0.5, colour = "darkgreen")+

geom_line(data = BatInnPareto %>% filter(.level == 1), alpha = 0.5, colour = "red")+

theme_minimal() +

annotate(geom = "text",x = 18,y = 600, label = "8 players",color = "red")+

scale_y_continuous(breaks = seq(100,600,100))+

coord_cartesian(xlim = c(0,180))+

theme_minimal() +

labs(x = "Runs Scored in an Innings",

y = "Innings Batting Strike Rate") +

theme(axis.title = element_text(size = 16),

panel.grid.minor.y = element_blank(),

axis.text = element_text(size = 16, color = "black"))
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Figure A.1: Pareto-optimal batting within an innings with the Pareto frontier highlighted in
red. N.B. For illustrative purposes, points were filtered out if both their runs
scored was below 50 and their strike rate was below 100.

BatInnPareto %>%

filter(.level == 1) %>%

mutate(SR = round(SR,2)) %>%

select(Batter,R,B,SR,Season,Match = Season.Match.No) %>%

arrange(-R)

Table A.1: List of all Pareto-optimal IPL batting within an innings.

Batter R (B) Strike Rate Match

Chris Gayle 175 (66) 265.15 IPL06 Match 31
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Batter R (B) Strike Rate Match

David Miller 101 (38) 265.78 IPL06 Match 51

Yusuf Pathan 100 (37) 270.27 IPL03 Match 2

Suresh Raina 87 (25) 348.00 IPL07 Match 59

Andre Russell 48 (13) 369.23 IPL12 Match 17

AB de Villiers 41 (11) 372.72 IPL08 Match 16

Chris Morris 38 (9) 422.22 IPL10 Match 9

Krunal Pandya 20 (4) 500.00 IPL13 Match 17

Numerous 6 (1) 600.00 IPL04 Match 74 1st occurrence

Pareto-optimal Batting Career

Six Pareto-optimal batting careers innings were identified. Andre Russell recorded the highest

career batting strike rate with 178.57 runs per 100 balls, while KL Rahul recorded the highest

batting average with 47.43 runs per dismissal. The IPL batting career Pareto frontier is

displayed in Figure A.2 and the batters are listed in Table A.2.

ggplot(BatCarPareto, aes(x = Average, y = StrikeRate)) +

geom_point(data = BatCarPareto %>% filter(.level != 1), alpha=0.3, size = 3) +

geom_point(data = BatCarPareto %>% filter(.level == 1), color = "red", size = 3)+

geom_line(data = BatCarPareto %>% filter(.level == 1), color = "red")+

geom_text(data = BatCarPareto %>% filter(.level == 1 & !(LastName %in% c("de Villiers", "Bairstow"))), aes(label = LastName), color = "red", hjust = "left",nudge_x = 0.5,nudge_y = 0)+
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geom_text(data = BatCarPareto %>% filter(.level == 1 & LastName == "Warner"), aes(label = LastName), color = "red", hjust = "left",nudge_x = 0.5,nudge_y = 0)+

geom_text(data = BatCarPareto %>% filter(.level == 1 & LastName == "Bairstow"), aes(label = LastName), color = "red", hjust = "left",nudge_x = 0.5,nudge_y = 3)+

geom_text(data = BatCarPareto %>% filter(.level == 1 & LastName == "de Villiers"), aes(label = LastName), color = "red", hjust = "left",nudge_x = 0.5,nudge_y = 1)+

theme_minimal() +

scale_x_continuous(limits = c(2,49),breaks = seq(from = 0,to = 50,by = 10))+

labs(x = "Career Batting Average",

y = "Career Batting Strike Rate") +

theme(axis.title = element_text(size = 16),

legend.position = "none",

axis.text = element_text(size = 16, color = "black"))
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Figure A.2: Pareto-optimal batting across a career with the Pareto frontier highlighted in red.
N.B. For illustrative purposes, points were filtered out if both their average was
below 20 and their strike rate was below 100.

BatCarPareto %>%

filter(.level == 1) %>%

select(Batter,Innings,Average,`Strike Rate` = StrikeRate) %>%

mutate(across(c(Average,`Strike Rate`),round,2)) %>%

arrange(-Average)

Table A.2: List of all Pareto-optimal IPL batting careers.

Batter Innings Average Strike Rate

KL Rahul 85 47.43 136.38
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Batter Innings Average Strike Rate

David Warner 150 41.60 139.97

Jonny Bairstow 28 41.52 142.19

Chris Gayle 141 39.72 148.96

AB de Villiers 170 39.71 151.69

Andre Russell 70 29.31 178.57

Pareto-optimal Bowling Innings

Three Pareto-optimal bowling innings were identified: 2/0 by Suresh Raina, 5/5 by Anil

Kumble, and 6/12 achieved by Alzarri Joseph. The IPL bowling innings Pareto frontier is

displayed in Figure A.3 and the bowlers are listed in Table A.3.

ggplot(BowlInnPareto, aes(x = W, y = Econ)) +

geom_jitter(data = BowlInnPareto %>% filter(.level != 1),aes(x = W, y = Econ), alpha=0.1, size = 3, width = 0.1) +

geom_point(data = BowlInnPareto %>% filter(.level == 1), aes(x = W, y = Econ), alpha = 0.3, shape = 21, size = 3, fill = "red", color = "red") +

geom_text(data = BowlInnPareto %>% filter(.level == 1), aes(x = W, y = Econ, label = LastName), size = 5, color = "Red", hjust = "left",nudge_x = -0.3,nudge_y = -1)+

geom_line(data = BowlInnPareto %>% filter(.level == 1), aes(x = W, y = Econ), alpha = 0.5,colour = "red")+

theme_minimal() +

labs(x = "Wickets in an innings",

y = "Innings Bowling Economy") +

coord_cartesian(xlim = c(0,6.3))+
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theme(axis.title = element_text(size = 16),

legend.position = "none",

panel.grid.minor.y = element_blank(),

axis.text = element_text(size = 16, color = "black"))
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Figure A.3: Pareto-optimal bowling within an innings with the points on the Pareto frontier
highlighted in red.

BowlInnPareto %>%

filter(.level == 1) %>%

select(Bowler, Overs = O, Wickets = W, Runs = R, Season, Match = Season.Match.No) %>%

arrange(Wickets)
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Table A.3: List of all Pareto-optimal IPL bowling innings.

Bowler Overs Wickets Runs Match

Suresh Raina 0.3 2 0 IPL04 Match 52

Anil Kumble 3.1 5 5 IPL02 Match 2

Alzarri Joseph 3.4 6 12 IPL12 Match 19

Pareto-optimal Bowling Career

Five Pareto-optimal bowling careers were identified, with Doug Bollinger achieving the lowest

average, Rashid Khan achieving the lowest economy, while Kagiso Rabada recorded the lowest

strike rate. The IPL bowling career Pareto frontier is displayed in Figure A.4 and the bowlers

are listed in Table A.4.

BowlCarPareto$color <- case_when(BowlCarPareto$.level == 1 ~ 2,

BowlCarPareto$.level > 1 ~ 1)

BowlCarPareto$Label[BowlCarPareto$.level == 1] <- BowlCarPareto$LastName[BowlCarPareto$.level == 1]

BowlCarParetoPlot <-scatterplot3d(BowlCarPareto[c("Economy","Average","StrikeRate")], type = "h",pch = 16, color=BowlCarPareto$color,

xlab="Career Bowling Economy",

ylab="Career Bowling Strike Rate",

zlab="Career Bowling Average")

zz.coords <- BowlCarParetoPlot$xyz.convert(BowlCarPareto$Economy, BowlCarPareto$Average, BowlCarPareto$StrikeRate)

text(zz.coords$x,
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zz.coords$y,

labels = BowlCarPareto$Label,

cex = .8,

pos = 2,

col = "red")
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Figure A.4: Pareto-optimal bowling across a career with the points on the Pareto frontier
highlighted in red.

BowlCarPareto %>%

filter(.level == 1) %>%

select(Bowler, Innings, Average, Economy, `Strike Rate` = StrikeRate) %>%

mutate(across(c(Average:`Strike Rate`),round,2)) %>%

arrange(Average)
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Table A.4: List of all Pareto-optimal IPL bowling careers.

Bowler Innings Average Economy Strike Rate

Doug Bollinger 27 18.73 7.22 15.57

Kagiso Rabada 59 19.71 8.22 14.39

Lasith Malinga 122 19.79 7.14 16.63

Jofra Archer 35 21.33 7.13 17.93

Rashid Khan 86 21.46 6.40 20.12

A.5 Discussion

This study sought to use Pareto frontiers to visualise optimal Twenty20 cricket batting and

bowling performances, both within an innings as well as across a career. By analysing perfor-

mance multivariately, rather than simply analysing multiple variables univariately, players can

be deemed optimal despite not being objectively highest in a single variable. When conflicting

attributes are of equal interest, Pareto frontiers can view these variables in tandem as the

expectations of an individual to attain the highest level in both attributes univariately may

be unfeasible. All four Pareto frontiers contained at least one athlete that was not the highest

ranked athlete in any metric when analysed univariately, and yet was deemed Pareto-optimal

due to their balance in the metrics of interest.

The main advantage of Pareto frontiers highlighted in the present study is identifying athletes
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who are optimal across multiple metrics even when they are not the highest ranked in any

metric. This was most evident where Chris Gayle, when viewed univariately, has the 9th-

highest career batting average (39.72), which is 6.71 runs per innings lower than the highest

(Figure 2). Similarly, he has the 14th-highest strike rate, striking at 148.96 which is 29.61 runs

per 100 balls lower than the highest. However, when considering both metrics simultaneously

and visualising these metrics, he is one of the best batsmen across the 14 seasons of the IPL.

The present study also illustrated how Pareto frontiers can be used to visualise talent in more

than 2 dimensions. For example, while Jofra Archer has the sixth-lowest bowling average,

14th-lowest economy, and the 19th-lowest strike rate (see Figure 4), he can be deemed a Pareto-

optimal bowler as there are no other bowlers who supersede him across all three metrics. While

there will be some correlations between the three bowling metrics (i.e., average, economy, and

strike rate) as the metrics are related (e.g., wickets taken is the denominator of average and

numerator of strike rate), visualising the third dimension is still necessary as the reader would

still need to multiply the x and y values to understand where they would sit in the third

dimension.

In the present study we chose to observe batting and bowling as purely independent roles

within cricket; however, there are also avenues for Pareto frontiers to be established for all-

rounders within cricket (i.e., players that are picked for both their batting and bowling ability).

However, it should be noted that if an all-rounder Pareto frontier were to be established with

both batting average and strike rate as well as bowling average, economy, and strike rate, the

resulting five-dimensional outputs, while valid and executable, become increasingly difficult to
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interpret and visualise. To do such an analysis, a factor-reduction technique such as principal

components analysis should be considered and the Pareto frontier could be built from the

extracted components (e.g., batting and bowling).

While the present study is designed to be an introduction for sports scientists to the concept of

Pareto frontiers, it should also be considered that there is some level of uncertainty surrounding

each observation in the career Pareto frontiers due to the differing number of observations. For

example, Jonny Bairstow is deemed Pareto-optimal as he is currently striking at 142.19 at an

average of 41.52 after 28 innings; however, it is right to assume that it is more uncertain

that he lies on the frontier than AB de Villiers who has 170 observations. Therefore, future

research could consider providing confidence or credible intervals around the probability that

an individual lies on the Pareto frontier. Consequently, it is then feasible that a probability

that an individual sits on the first, second, or third frontier could be calculated.

While the present study used Twenty20 cricket to illustrate the power and usefulness of Pareto

frontiers, the concept can be widely applied within sports science data sets, especially when

the variables of interest are uncorrelated or negatively correlated. Pareto frontiers can still

be established between two positively correlated metrics; however, it is likely that there will

be less ‘hidden’ athletes on this frontier as naturally the athletes who are high in one metric

will be high in the other metric. Future research should apply Pareto frontiers across different

avenues within sports performance analysis which have multi-faceted determinants as there

are many other possibilities within sports whereby Pareto frontiers can reveal athletes who

possess the optimal balance of the metrics of interest.
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A.6 Conclusion

With the proliferation of various physiological, mechanical, and skill-related attributes asso-

ciated with performance, Pareto frontiers should be used within sports science to visualise

multiple performance metrics. By analysing opposing data in tandem, more feasible expecta-

tions and benchmarks can be established to reveal talent that may have been missed when

analysing multiple metrics univariately.
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B Downloadable Data Sets

Study 1:

• NRLW mean speed mixed model data set

Study 2:

• Men’s BBL batting data set

• Women’s BBL batting data set

• Men’s BBL bowling data set

• Women’s BBL bowling data set

Study 3:

• �-Alanine Bayesian data set

Study 4:

• NRLW Full Match data set
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www/data/Study_1_mm_nrlw.csv
www/data/Study_2_pareto_mbblbat.csv
www/data/Study_2_pareto_wbblbat.csv
www/data/Study_2_pareto_mbblbowl.csv
www/data/Study_2_pareto_wbblbowl.csv
www/data/Study_3_bayesian_beta_alanine.csv
www/data/Study_4_nrlw_match.csv


• NRLW Half-By-Half data set

Study 5:

• Bayesian Mixed Model Pareto data set

Appendix A:

• IPL batting data set

• IPL bowling data set
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www/data/Study_4_nrlw_half.csv
www/data/Study_5_bayesian_pareto_mm.csv
www/data/Appendix_A_pareto_iplbat.csv
www/data/Appendix_A_pareto_iplbowl.csv


C Downloadable R Scripts

Literature Review: Literature review code

Study 1: Study 1 code

Study 2: Study 2 code

Study 3: Study 3 code

Study 4: Study 4 code

Study 5: Study 5 code

Discussion: Discussion code

Appendix A: Appendix A code

246

www/scripts/Literature_Review_code.R
www/scripts/Study_1_code.R
www/scripts/Study_2_code.R
www/scripts/Study_3_code.R
www/scripts/Study_4_code.R
www/scripts/Study_5_code.R
www/scripts/Discussion_code.R
www/scripts/Appendix_A_code.R
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