There are five experimental chapters to this thesis. The first three of which are more methodology-focused, with each chapter highlighting a different statistical principle. Namely, Chapter 3 explores mixed models, Chapter 4 explores Pareto frontiers, and Chapter 5 explores Bayesian inference. Following this are another two chapters that are more application-focused, building off the three methodology chapters. Chapter 6 presents a relatively simple mixed model application study, while Chapter 7 serves as the ‘capstone’ study, presenting a Pareto frontier of conditional effects arising from a mixed model in Bayesian framework.
Abt, G., Boreham, C., Davison, G., Jackson, R., Nevill, A., Wallace, E., & Williams, M. (2020). Power, precision, and sample size estimation in sport and exercise science research.
Journal of Sports Sciences,
38(17), 1933–1935.
https://doi.org/10.1080/02640414.2020.1776002
Atkinson, G., Batterham, A., & Hopkins, W. (2012). Sports performance research under the spotlight.
International Journal of Sports Medicine,
33(12), 949.
https://doi.org/10.1055/s-0032-1327755
Bacchetti, P., Deeks, S., & McCune, J. (2011). Breaking free of sample size dogma to perform innovative translational research.
Science Translational Medicine,
3(87), 87ps24.
https://doi.org/10.1126/scitranslmed.3001628
Barker, R., & Schofield, M. (2008). Inference about magnitudes of effects.
International Journal of Sports Physiology and Performance,
3(4), 547–557.
https://doi.org/10.1123/ijspp.3.4.547
Batterham, A., & Hopkins, W. (2006). Making meaningful inferences about magnitudes.
International Journal of Sports Physiology and Performance,
1(1), 50–57.
https://doi.org/10.1123/ijspp.1.1.50
Bernards, J., Sato, K., Haff, G., & Bazyler, C. (2017). Current research and statistical practices in sport science and a need for change.
Sports,
5(4), 87.
https://doi.org/10.3390/sports5040087
Borenstein, M. (2009).
The handbook of research synthesis and meta-analysis (H. Cooper, L. Hedges, & J. Valentine, Eds.; Vol. 2, pp. 221–235).
https://doi.org/10.7758/9781610448864
Borg, D., Bon, J., Sainani, K., Baguley, B., Tierney, N., & Drovandi, C. (2020). Comment on:
‘Moving sport and exercise science forward: A call for the adoption of more transparent research practices
’.
Sports Medicine,
50(8), 1551–1553.
https://doi.org/10.1007/s40279-020-01298-5
Borg, D., Minett, G., Stewart, I., & Drovandi, C. (2018). Bayesian methods might solve the problems with magnitude-based inference. A letter in response to
Dr. Sainani.
Medicine and Science in Sports and Exercise,
50(12), 2609–2610.
https://doi.org/10.1249/mss.0000000000001736
Borg, D., Nguyen, R., & Tierney, N. (2021). Missing data: Current practice in football research and recommendations for improvement.
Science and Medicine in Football,
0(ja), null.
https://doi.org/10.1080/24733938.2021.1922739
Caldwell, A., Vigotsky, A., Tenan, M., Radel, R., Mellor, D., Kreutzer, A., Lahart, I., Mills, J., Boisgontier, M., Boardley, I., Bouza, B., Cheval, B., Chow, Z. R., Contreras, B., Dieter, B., Halperin, I., Haun, C., Knudson, D., Lahti, J., … Consortium for Transparency in Exercise Science (COTES) Collaborators. (2020). Moving sport and exercise science forward: A call for the adoption of more transparent research practices.
Sports Medicine,
50(3), 449–459.
https://doi.org/10.1007/s40279-019-01227-1
Cobb, G., & Moore, D. (1997). Mathematics, statistics, and teaching.
The American Mathematical Monthly,
104(9), 801–823.
https://doi.org/10.1080/00029890.1997.11990723
Crang, Z., Duthie, G., Cole, M., Weakley, J., Hewitt, A., & Johnston, R. (2021). The validity and reliability of wearable microtechnology for intermittent team sports: A systematic review.
Sports Medicine,
51(3), 549–565.
https://doi.org/10.1007/s40279-020-01399-1
Dalton-Barron, N., Whitehead, S., Roe, G., Cummins, C., Beggs, C., & Jones, B. (2020). Time to embrace the complexity when analysing GPS data? A systematic review of contextual factors on match running in rugby league.
Journal of Sports Sciences,
38(10), 1161–1180.
https://doi.org/10.1080/02640414.2020.1745446
Deb, K., & Datta, R. (2012). Hybrid evolutionary multi-objective optimization and analysis of machining operations.
Engineering Optimization,
44(6), 685–706.
https://doi.org/10.1080/0305215X.2011.604316
Delaney, J., Thornton, H., Duthie, G., & Dascombe, B. (2016). Factors that influence running intensity in interchange players in professional rugby league.
International Journal of Sports Physiology and Performance,
11(8), 1047–1052.
https://doi.org/10.1123/ijspp.2015-0559
Dodd, K., & Newans, T. (2018). Talent identification for soccer: Physiological aspects.
Journal of Science and Medicine in Sport,
21(10), 1073–1078.
https://doi.org/10.1016/j.jsams.2018.01.009
Exercise and Sports Science Australia. (2019).
The professional standards documents.
https://www.essa.org.au/Public/Professional_Standards/The_professional_standards.aspx
Franco, A., Malhotra, N., & Simonovits, G. (2014). Publication bias in the social sciences: Unlocking the file drawer.
Science,
345(6203), 1502–1505.
https://doi.org/10.1126/science.1255484
Franklin, C., Kader, G., Mewborn, D., Moreno, J., Peck, R., Perry, M., & Scheaffer, R. (2007). Guidelines for assessment and instruction in statistics education (GAISE) report. In Alexandria: American Statistical Association.
Gal, I. (2002). Adults’ statistical literacy: Meanings, components, responsibilities.
International Statistical Review,
70(1), 1–25.
https://doi.org/10.1111/j.1751-5823.2002.tb00336.x
Garfield, J., & Ben-Zvi, D. (2008).
Developing students’ statistical reasoning: Connecting research and teaching practice. Springer Science & Business Media.
https://doi.org/10.1007/978-1-4020-8383-9
Glassbrook, D., Doyle, T., Alderson, J., & Fuller, J. (2019). The demands of professional rugby league match-play: A meta-analysis.
Sports Medicine - Open,
5(1), 24.
https://doi.org/10.1186/s40798-019-0197-9
Griffin, J., Newans, T., Horan, S., Keogh, J., Andreatta, M., & Minahan, C. (2021). Acceleration and high-speed running profiles of women’s international and domestic football matches.
Frontiers in Sports and Active Living,
3, 71.
https://doi.org/10.3389/fspor.2021.604605
Gunantara, N. (2018). A review of multi-objective optimization: Methods and its applications.
Cogent Engineering,
5(1), 1502242.
https://doi.org/10.1080/23311916.2018.1502242
Hopkins, W., Marshall, S., Batterham, A., & Hanin, J. (2009). Progressive statistics for studies in sports medicine and exercise science.
Medicine & Science in Sports & Exercise,
41(1), 3–12.
https://doi.org/10.1249/MSS.0b013e31818cb278
Horn, J., Nafpliotis, N., & Goldberg, D. (1994).
A niched Pareto genetic algorithm for multiobjective optimization. 82–87.
https://doi.org/https://doi.org/10.1109/ICEC.1994.350037
John, L., Loewenstein, G., & Prelec, D. (2012). Measuring the prevalence of questionable research practices with incentives for truth telling.
Psychological Science,
23(5), 524–532.
https://doi.org/10.1177/0956797611430953
Johnston, K., Wattie, N., Schorer, J., & Baker, J. (2018). Talent identification in sport: A systematic review.
Sports Medicine,
48(1), 97–109.
https://doi.org/10.1007/s40279-017-0803-2
Kempton, T., Sirotic, A., & Coutts, A. (2017). A comparison of physical and technical performance profiles between successful and less-successful professional rugby league teams.
International Journal of Sports Physiology and Performance,
12(4), 520–526.
https://doi.org/10.1123/ijspp.2016-0003
Kenny, D., & Judd, C. (1986). Consequences of violating the independence assumption in analysis of variance.
Psychological Bulletin,
99(3), 422–431.
https://doi.org/10.1037/0033-2909.99.3.422
Kruschke, J. (2014).
Doing bayesian data analysis: A tutorial with r, JAGS, and stan. Academic Press.
https://doi.org/10.1016/B978-0-12-405888-0.00001-5
Kwon, S.-S., Lee, K. M., Chung, C. Y., Lee, S. Y., & Park, M. S. (2014). An introduction to the linear mixed model for orthopaedic research.
JBJS Reviews,
2(12).
https://doi.org/10.2106/JBJS.RVW.N.00009
Mara, J., Thompson, K., Pumpa, K., & Morgan, S. (2017). The acceleration and deceleration profiles of elite female soccer players during competitive matches.
Journal of Science and Medicine in Sport,
20(9), 867–872.
https://doi.org/10.1016/j.jsams.2016.12.078
Marler, T., & Arora, J. (2004). Survey of multi-objective optimization methods for engineering.
Structural and Multidisciplinary Optimization,
26(6), 369–395.
https://doi.org/10.1007/S00158-003-0368-6
Mastroddi, F., & Gemma, S. (2013). Analysis of
Pareto frontiers for multidisciplinary design optimization of aircraft.
Aerospace Science and Technology,
28(1), 40–55.
https://doi.org/10.1016/j.ast.2012.10.003
McElreath, R. (2018).
Statistical rethinking: A bayesian course with examples in r and stan. Chapman; Hall/CRC.
https://doi.org/10.1201/9781315372495
Medicine & Science in Sports & Exercise. (2023).
Information for authors.
https://edmgr.ovid.com/msse/accounts/ifauth.htm
Mengersen, K., Drovandi, C., Robert, C., Pyne, D., & Gore, C. (2016). Bayesian estimation of small effects in exercise and sports science.
PLoS One,
11(4), e0147311.
https://doi.org/10.1371/journal.pone.0147311
Nakai, M., & Ke, W. (2011). Review of the methods for handling missing data in longitudinal data analysis. International Journal of Mathematical Analysis, 13.
Newans, T., Bellinger, P., Dodd, K., & Minahan, C. (2019). Modelling the acceleration and deceleration profile of elite-level soccer players.
International Journal of Sports Medicine,
40(5), 331–335.
https://doi.org/10.1055/a-0853-7676
Newell, J., Aitchison, T., & Grant, S. (2014).
Statistics for sports and exercise science: A practical approach. Routledge.
https://doi.org/10.4324/9781315847542
Ottosson, R., Engström, P., Sjöström, D., Behrens, C., Karlsson, A., Knöös, T., & Ceberg, C. (2009). The feasibility of using pareto fronts for comparison of treatment planning systems and delivery techniques.
Acta Oncologica,
48(2), 233–237.
https://doi.org/10.1080/02841860802251559
Ploutz-Snyder, R., Fiedler, J., & Feiveson, A. (2014). Justifying small-n research in scientifically amazing settings: Challenging the notion that only
“big-n
” studies are worthwhile.
Journal of Applied Physiology,
116(9), 1251–1252.
https://doi.org/10.1152/japplphysiol.01335.2013
Ponsich, A., Jaimes, A. L., & Coello, C. A. C. (2012). A survey on multiobjective evolutionary algorithms for the solution of the portfolio optimization problem and other finance and economics applications.
IEEE Transactions on Evolutionary Computation,
17(3), 321–344.
https://doi.org/10.1109/TEVC.2012.2196800
Queensland Department of Education and Training. (2023).
Literacy and numeracy fact sheet.
https://education.qld.gov.au/parents/Documents/factsheet-l-n.pdf
Quinn, K., Newans, T., Buxton, S., Thomson, T., Tyler, R., & Minahan, C. (2020). Movement patterns of players in the Australian Women
’s Rugby League team during international competition.
Journal of Science and Medicine in Sport,
23(3), 315–319.
https://doi.org/10.1016/j.jsams.2019.10.009
Quintana, D., & Williams, D. (2018). Bayesian alternatives for common null-hypothesis significance tests in psychiatry: A non-technical guide using JASP. BMC Psychiatry, 18(1), 178.
Russell, M., Sparkes, W., Northeast, J., Cook, C., Love, T., Bracken, R., & Kilduff, L. (2016). Changes in acceleration and deceleration capacity throughout professional soccer match-play.
The Journal of Strength and Conditioning Research,
30(10), 2839–2844.
https://doi.org/10.1519/jsc.0000000000000805
Sainani, K. (2018). The problem with
"magnitude-based inference
".
Medicine and Science in Sports and Exercise,
50(10), 2166–2176.
https://doi.org/10.1249/MSS.0000000000001645
Santos-Fernandez, E., Wu, P., & Mengersen, K. (2019). Bayesian statistics meets sports: A comprehensive review.
Journal of Quantitative Analysis in Sports,
15(4), 289–312.
https://doi.org/10.1186/s12888-018-1761-4
Scott, J., Hill, S., Barwood, D., & Penney, D. (2021). Physical literacy and policy alignment in sport and education in
Australia.
European Physical Education Review,
27(2), 328–347.
https://doi.org/10.1177/1356336X20947434
Seshadri, D., Thom, M., Harlow, E., Gabbett, T., Geletka, B., Hsu, J., Drummond, C., Phelan, D., & Voos, J. (2021). Wearable technology and analytics as a complementary toolkit to optimize workload and to reduce injury burden.
Frontiers in Sports and Active Living,
2.
https://doi.org/10.3389/fspor.2020.630576
Speed, H., & Andersen, M. (2000). What exercise and sport scientists don’t understand.
Journal of Science and Medicine in Sport,
3(1), 84–92.
https://doi.org/10.1016/S1440-2440(00)80051-1
Tapia, M. G. C., & Coello, C. A. C. (2007).
Applications of multi-objective evolutionary algorithms in economics and finance: A survey. 532–539.
https://doi.org/10.1109/CEC.2007.4424516
Vaeyens, R., Lenoir, M., Williams, M., & Philippaerts, R. (2008). Talent identification and development programmes in sport.
Sports Medicine,
38(9), 703–714.
https://doi.org/10.2165/00007256-200838090-00001
Vigh-Larsen, J., Dalgas, U., & Andersen, T. (2018). Position-specific acceleration and deceleration profiles in elite youth and senior soccer players.
The Journal of Strength and Conditioning Research,
32(4), 1114–1122.
https://doi.org/10.1519/JSC.0000000000001918
Welsh, A., & Knight, E. (2015).
“Magnitude-based inference
”: A statistical review.
Medicine and Science in Sports and Exercise,
47(4), 874–884.
https://doi.org/10.1249/MSS.0000000000000451
Whitehead, M. (2010).
Physical literacy (pp. 8–19). Routledge.
https://doi.org/10.4324/9780203881903