References

Abbott, W., Brickley, G., & Smeeton, N. (2018). Positional differences in GPS outputs and perceived exertion during soccer training games and competition. The Journal of Strength & Conditioning Research, 32(11), 3222–3231. https://doi.org/10.1519/JSC.0000000000002387
Abt, G., Boreham, C., Davison, G., Jackson, R., Nevill, A., Wallace, E., & Williams, M. (2020). Power, precision, and sample size estimation in sport and exercise science research. Journal of Sports Sciences, 38(17), 1933–1935. https://doi.org/10.1080/02640414.2020.1776002
Andersson, H., Randers, M., Heiner-Møller, A., Krustrup, P., & Mohr, M. (2010). Elite female soccer players perform more high-intensity running when playing in international games compared with domestic league games. The Journal of Strength and Conditioning Research, 24(4), 912–919. https://doi.org/10.1519/jsc.0b013e3181d09f21
Atkinson, G., Batterham, A., & Hopkins, W. (2012). Sports performance research under the spotlight. International Journal of Sports Medicine, 33(12), 949. https://doi.org/10.1055/s-0032-1327755
Bacchetti, P., Deeks, S., & McCune, J. (2011). Breaking free of sample size dogma to perform innovative translational research. Science Translational Medicine, 3(87), 87ps24. https://doi.org/10.1126/scitranslmed.3001628
Baguet, A., Koppo, K., Pottier, A., & Derave, W. (2010). Β-alanine supplementation reduces acidosis but not oxygen uptake response during high-intensity cycling exercise. European Journal of Applied Physiology, 108(3), 495–503. https://doi.org/10.1007/s00421-009-1225-0
Baldwin, S., & Fellingham, G. (2013). Bayesian methods for the analysis of small sample multilevel data with a complex variance structure. Psychological Methods, 18(2), 151. https://doi.org/10.1037/a0030642
Barker, R., & Schofield, M. (2008). Inference about magnitudes of effects. International Journal of Sports Physiology and Performance, 3(4), 547–557. https://doi.org/10.1123/ijspp.3.4.547
Barr, G., & Kantor, B. (2004). A criterion for comparing and selecting batsmen in limited overs cricket. Journal of the Operational Research Society, 55(12), 1266–1274. https://doi.org/10.1057/palgrave.jors.2601800
Bartlett, J., Hatfield, M., Parker, B., Roberts, L., Minahan, C., Morton, J., & Thornton, H. (2020). DXA-derived estimates of energy balance and its relationship with changes in body composition across a season in team sport athletes. European Journal of Sport Science, 20(7), 859–867. https://doi.org/10.1080/17461391.2019.1669718
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01
Batterham, A., & Hopkins, W. (2006). Making meaningful inferences about magnitudes. International Journal of Sports Physiology and Performance, 1(1), 50–57. https://doi.org/10.1123/ijspp.1.1.50
Bauder, D., Bodnar, T., Parolya, N., & Schmid, W. (2021). Bayesian mean-variance analysis: Optimal portfolio selection under parameter uncertainty. Quantitative Finance, 21(2), 221–242. https://doi.org/10.1080/14697688.2020.1748214
Bellinger, P., Ferguson, C., Newans, T., & Minahan, C. (2020). No influence of prematch subjective wellness ratings on external load during elite Australian Football match play. International Journal of Sports Physiology and Performance, 15(6), 801–807. https://doi.org/10.1123/ijspp.2019-0395
Bellinger, P., & Minahan, C. (2016). The effect of β-alanine supplementation on cycling time trials of different length. European Journal of Sport Science, 16(7), 829–836. https://doi.org/10.1080/17461391.2015.1120782
Bernards, J., Sato, K., Haff, G., & Bazyler, C. (2017). Current research and statistical practices in sport science and a need for change. Sports, 5(4), 87. https://doi.org/10.3390/sports5040087
Bishop, D., Spencer, M., Duffield, R., & Lawrence, S. (2001). The validity of a repeated sprint ability test. Journal of Science and Medicine in Sport, 4(1), 19–29. https://doi.org/10.1016/S1440-2440(01)80004-9
Borenstein, M. (2009). The handbook of research synthesis and meta-analysis (H. Cooper, L. Hedges, & J. Valentine, Eds.; Vol. 2, pp. 221–235). https://doi.org/10.7758/9781610448864
Borg, D., Barnett, A., Caldwell, A., White, N., & Stewart, I. (2023). The Bias for Statistical Significance in Sport and Exercise Medicine. Journal of Science and Medicine in Sport. https://doi.org/10.1016/j.jsams.2023.03.002
Borg, D., Bon, J., Sainani, K., Baguley, B., Tierney, N., & Drovandi, C. (2020). Comment on: Moving sport and exercise science forward: A call for the adoption of more transparent research practices. Sports Medicine, 50(8), 1551–1553. https://doi.org/10.1007/s40279-020-01298-5
Borg, D., Minett, G., Stewart, I., & Drovandi, C. (2018). Bayesian methods might solve the problems with magnitude-based inference. A letter in response to Dr. Sainani. Medicine and Science in Sports and Exercise, 50(12), 2609–2610. https://doi.org/10.1249/mss.0000000000001736
Borg, D., Nguyen, R., & Tierney, N. (2021). Missing data: Current practice in football research and recommendations for improvement. Science and Medicine in Football, 0(ja), null. https://doi.org/10.1080/24733938.2021.1922739
Brown, D., Dwyer, D., Robertson, S., & Gastin, P. (2016). Metabolic power method: Underestimation of energy expenditure in field-sport movements using a global positioning system tracking system. International Journal of Sports Physiology and Performance, 11(8), 1067–1073. https://doi.org/10.1123/ijspp.2016-0021
Buchheit, M., Manouvrier, C., Cassirame, J., & Morin, J.-B. (2015). Monitoring locomotor load in soccer: Is metabolic power, powerful? International Journal of Sports Medicine, 36(14), 1149–1155. https://doi.org/10.1055/s-0035-1555927
Bukiet, B., & Ovens, M. (2006). A mathematical modelling approach to one-day cricket batting orders. Journal of Sports Science & Medicine, 5(4), 495–502. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3861747/
Bürkner, P.-C. (2017). Brms: An r package for bayesian multilevel models using stan. Journal of Statistical Software, 80(1), 1–28. https://doi.org/10.18637/jss.v080.i01
Caldwell, A., Vigotsky, A., Tenan, M., Radel, R., Mellor, D., Kreutzer, A., Lahart, I., Mills, J., Boisgontier, M., Boardley, I., Bouza, B., Cheval, B., Chow, Z. R., Contreras, B., Dieter, B., Halperin, I., Haun, C., Knudson, D., Lahti, J., … Consortium for Transparency in Exercise Science (COTES) Collaborators. (2020). Moving sport and exercise science forward: A call for the adoption of more transparent research practices. Sports Medicine, 50(3), 449–459. https://doi.org/10.1007/s40279-019-01227-1
Castagna, C., Impellizzeri, F., Cecchini, E., Rampinini, E., & Alvarez, J. C. B. (2009). Effects of intermittent-endurance fitness on match performance in young male soccer players. The Journal of Strength and Conditioning Research, 23(7), 1954–1959. https://doi.org/10.1519/JSC.0b013e3181b7f743
Clarke, A., Anson, J., & Pyne, D. (2017). Game movement demands and physical profiles of junior, senior and elite male and female rugby sevens players. Journal of Sports Sciences, 35(8), 727–733. https://doi.org/10.1080/02640414.2016.1186281
Clarke, A., Anson, J., & Pyne, D. (2015). Physiologically based GPS speed zones for evaluating running demands in womens rugby sevens. Journal of Sports Sciences, 33(11), 1101–1108. https://doi.org/10.1080/02640414.2014.988740
Clarke, A., Couvalias, G., Kempton, T., & Dascombe, B. (2019). Comparison of the match running demands of elite and sub-elite women’s Australian Football. Science and Medicine in Football, 3(1), 70–76. https://doi.org/10.1080/24733938.2018.1479067
Clarke, A., Ryan, S., Couvalias, G., Dascombe, B., Coutts, A., & Kempton, T. (2018). Physical demands and technical performance in Australian Football League Women’s (AFLW) competition match-play. Journal of Science and Medicine in Sport, 21(7), 748–752. https://doi.org/10.1016/j.jsams.2017.11.018
Cobb, G., & Moore, D. (1997). Mathematics, statistics, and teaching. The American Mathematical Monthly, 104(9), 801–823. https://doi.org/10.1080/00029890.1997.11990723
Coutts, A., Quinn, J., Hocking, J., Castagna, C., & Rampinini, E. (2010). Match running performance in elite Australian Rules Football. Journal of Science and Medicine in Sport, 13(5), 543–548. https://doi.org/10.1016/j.jsams.2009.09.004
Crang, Z., Duthie, G., Cole, M., Weakley, J., Hewitt, A., & Johnston, R. (2021). The validity and reliability of wearable microtechnology for intermittent team sports: A systematic review. Sports Medicine, 51(3), 549–565. https://doi.org/10.1007/s40279-020-01399-1
Crielaard, J.-M., & Pirnay, F. (1981). Anaerobic and aerobic power of top athletes. European Journal of Applied Physiology and Occupational Physiology, 47(3), 295–300. https://doi.org/10.1007/BF00422475
Cummins, C., Gray, A., Shorter, K., Halaki, M., & Orr, R. (2018). Energetic demands of interchange and full-match rugby league players. The Journal of Strength and Conditioning Research, 32(12), 3447–3455. https://10.1519/JSC.0000000000001801
Cummins, C., Orr, R., O’Connor, H., & West, C. (2013). Global Positioning Systems (GPS) and microtechnology sensors in team sports: A systematic review. Sports Medicine, 43(10), 1025–1042. https://doi.org/10.1007/s40279-013-0069-2
Cunningham, D., Shearer, D., Carter, N., Drawer, S., Pollard, B., Bennett, M., Eager, R., Cook, C., Farrell, J., Russell, M., & Kilduff, L. (2018). Assessing worst case scenarios in movement demands derived from global positioning systems during international rugby union matches: Rolling averages versus fixed length epochs. PLoS One, 13(4), e0195197. https://doi.org/10.1371/journal.pone.0195197
Dalton-Barron, N., Whitehead, S., Roe, G., Cummins, C., Beggs, C., & Jones, B. (2020). Time to embrace the complexity when analysing GPS data? A systematic review of contextual factors on match running in rugby league. Journal of Sports Sciences, 38(10), 1161–1180. https://doi.org/10.1080/02640414.2020.1745446
Davids, K., Lees, A., & Burwitz, L. (2000). Understanding and measuring coordination and control in kicking skills in soccer: Implications for talent identification and skill acquisition. Journal of Sports Sciences, 18(9), 703–714. https://doi.org/10.1080/02640410050120087
Deb, K., & Datta, R. (2012). Hybrid evolutionary multi-objective optimization and analysis of machining operations. Engineering Optimization, 44(6), 685–706. https://doi.org/10.1080/0305215X.2011.604316
Delaney, J., Duthie, G., Thornton, H., Scott, T., Gay, D., & Dascombe, B. (2016). Acceleration-based running intensities of professional rugby league match play. International Journal of Sports Physiology and Performance, 11(6), 802–809. https://doi.org/10.1123/ijspp.2015-0424
Delaney, J., Scott, T., Thornton, H., Bennett, K., Gay, D., Duthie, G., & Dascombe, B. (2015). Establishing duration-specific running intensities from match-play analysis in rugby league. International Journal of Sports Physiology and Performance, 10(6), 725–731.
Delaney, J., Thornton, H., Duthie, G., & Dascombe, B. (2016). Factors that influence running intensity in interchange players in professional rugby league. International Journal of Sports Physiology and Performance, 11(8), 1047–1052. https://doi.org/10.1123/ijspp.2015-0559
Delaney, J., Wileman, T., Perry, N., Thornton, H., Moresi, M., & Duthie, G. (2019). The validity of a global navigation satellite system for quantifying small-area team-sport movements. The Journal of Strength and Conditioning Research, 33(6), 1463. https://doi.org/10.1519/JSC.0000000000003157
Deutsch, M., Kearney, G., & Rehrer, N. (2007). Time-motion analysis of professional rugby union players during match-play. Journal of Sports Sciences, 25(4), 461–472. https://doi.org/10.1080/02640410600631298
Dodd, K., & Newans, T. (2018). Talent identification for soccer: Physiological aspects. Journal of Science and Medicine in Sport, 21(10), 1073–1078. https://doi.org/10.1016/j.jsams.2018.01.009
Doncaster, G., Page, R., White, P., Svenson, R., & Twist, C. (2020). Analysis of physical demands during youth soccer match-play: Considerations of sampling method and epoch length. Research Quarterly for Exercise and Sport, 91(2), 326–334. https://doi.org/10.1080/02701367.2019.1669766
Duthie, G., Robertson, S., & Thornton, H. (2021). A GNSS-based method to define athlete manoeuvrability in field-based team sports. PLoS One, 16(11), e0260363. https://doi.org/10.1371/journal.pone.0260363
Dutka, T., Lamboley, C., McKenna, M., Murphy, R., & Lamb, G. (2012). Effects of carnosine on contractile apparatus Ca2+ sensitivity and sarcoplasmic reticulum Ca2+ release in human skeletal muscle fibers. Journal of Applied Physiology, 112(5), 728–736. https://doi.org/10.1152/japplphysiol.01331.2011
Emmonds, S., Heyward, O., & Jones, B. (2019). The challenge of applying and undertaking research in female sport. Sports Medicine-Open, 5(1), 1–4. https://doi.org/10.1186/s40798-019-0224-x
Evans, M., & Moshonov, H. (2006). Checking for prior-data conflict. Bayesian Analysis, 1(4), 893–914. https://doi.org/10.1214/06-BA129
Everaert, I., Stegen, S., Vanheel, B., Taes, Y., & Derave, W. (2013). Effect of beta-alanine and carnosine supplementation on muscle contractility in mice. Medicine and Science in Sports and Exercise, 45(1), 43–51. https://doi.org/10.1249/mss.0b013e31826cdb68
Exercise and Sports Science Australia. (2019). The professional standards documents. https://www.essa.org.au/Public/Professional_Standards/The_professional_standards.aspx
Falk, B., Lidor, R., Lander, Y., & Lang, B. (2004). Talent identification and early development of elite water-polo players: A 2-year follow-up study. Journal of Sports Sciences, 22(4), 347–355. https://doi.org/10.1080/02640410310001641566
Fereday, K., Hills, S., Russell, M., Smith, J., Cunningham, D., Shearer, D., McNarry, M., & Kilduff, L. (2020). A comparison of rolling averages versus discrete time epochs for assessing the worst-case scenario locomotor demands of professional soccer match-play. Journal of Science and Medicine in Sport, 23(8), 764–769. https://doi.org/10.1016/j.jsams.2020.01.002
Ferris, D., Gabbett, T., McLellan, C., & Minahan, C. (2018). Basal markers of inflammation, muscle damage, and performance during five weeks of pre-season training in elite youth rugby league players. Journal of Athletic Enhancement, 7(2). https://doi.org/10.4172/2324-9080.1000286
Franco, A., Malhotra, N., & Simonovits, G. (2014). Publication bias in the social sciences: Unlocking the file drawer. Science, 345(6203), 1502–1505. https://doi.org/10.1126/science.1255484
Franklin, C., Kader, G., Mewborn, D., Moreno, J., Peck, R., Perry, M., & Scheaffer, R. (2007). Guidelines for assessment and instruction in statistics education (GAISE) report. In Alexandria: American Statistical Association.
Gal, I. (2002). Adults’ statistical literacy: Meanings, components, responsibilities. International Statistical Review, 70(1), 1–25. https://doi.org/10.1111/j.1751-5823.2002.tb00336.x
Gallo, T., Cormack, S., Gabbett, T., & Lorenzen, C. (2017). Self-reported wellness profiles of professional Australian Football players during the competition phase of the season. The Journal of Strength and Conditioning Research, 31(2), 495–502. https://doi.org/10.1519/jsc.0000000000001515
Garfield, J., & Ben-Zvi, D. (2008). Developing students statistical reasoning: Connecting research and teaching practice. Springer Science & Business Media. https://doi.org/10.1007/978-1-4020-8383-9
Gillies, D. (2000). Philosophical theories of probability. Psychology Press. https://doi.org/10.4324/9780203132241
Glassbrook, D., Doyle, T., Alderson, J., & Fuller, J. (2019). The demands of professional rugby league match-play: A meta-analysis. Sports Medicine - Open, 5(1), 24. https://doi.org/10.1186/s40798-019-0197-9
Govus, A., Coutts, A., Duffield, R., Murray, A., & Fullagar, H. (2018). Relationship between pretraining subjective wellness measures, player load, and rating-of-perceived-exertion training load in american college football. International Journal of Sports Physiology and Performance, 13(1), 95–101. https://doi.org/10.1123/ijspp.2016-0714
Griffin, J., Larsen, B., Horan, S., Keogh, J., Dodd, K., Andreatta, M., & Minahan, C. (2020). Women’s football: An examination of factors that influence movement patterns. The Journal of Strength & Conditioning Research, 34(8), 2384–2393. https://doi.org/10.1519/jsc.0000000000003638
Griffin, J., Newans, T., Horan, S., Keogh, J., Andreatta, M., & Minahan, C. (2021). Acceleration and high-speed running profiles of women’s international and domestic football matches. Frontiers in Sports and Active Living, 3, 71. https://doi.org/10.3389/fspor.2021.604605
Gunantara, N. (2018). A review of multi-objective optimization: Methods and its applications. Cogent Engineering, 5(1), 1502242. https://doi.org/10.1080/23311916.2018.1502242
Halson, S. (2014). Monitoring training load to understand fatigue in athletes. Sports Medicine, 44(2), 139–147. https://doi.org/10.1007/s40279-014-0253-z
Hannon, M., Coleman, N., Parker, L. J., McKeown, J., Unnithan, V., Close, G., Drust, B., & Morton, J. (2021). Seasonal training and match load and micro-cycle periodization in male premier league academy soccer players. Journal of Sports Sciences, 39(16), 1838–1849. https://doi.org/10.1080/02640414.2021.1899610
Harrison, X., Donaldson, L., Correa-Cano, M. E., Evans, J., Fisher, D., Goodwin, C., Robinson, B., Hodgson, D., & Inger, R. (2018). A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ, 6, e4794. https://doi.org/10.7717/peerj.4794
Haugnes, P., Torvik, P.-Ø., Ettema, G., Kocbach, J., & Sandbakk, Ø. (2019). The effect of maximal speed ability, pacing strategy, and technique on the finish sprint of a sprint cross-country skiing competition. International Journal of Sports Physiology and Performance, 14(6), 788–795. https://doi.org/10.1123/ijspp.2018-0507
Hennessy, L., & Jeffreys, I. (2018). The current use of GPS, its potential, and limitations in soccer. Strength & Conditioning Journal, 40(3), 83–94. https://doi.org/10.1519/SSC.0000000000000386
Hermassi, S., Aouadi, R., Khalifa, R., Tillaar, R. van den, Shephard, R., & Chelly, M. S. (2015). Relationships between the yo-yo intermittent recovery test and anaerobic performance tests in adolescent handball players. Journal of Human Kinetics, 45, 197–205. https://doi.org/10.1515/hukin-2015-0020
Hobson, R., Saunders, B., Ball, G., Harris, R., & Sale, C. (2012). Effects of β-alanine supplementation on exercise performance: A meta-analysis. Amino Acids, 43(1), 25–37. https://doi.org/10.1007/s00726-011-1200-z
Hodun, M., Clarke, R., De Ste Croix, M., & Hughes, J. (2016). Global positioning system analysis of running performance in female field sports: A review of the literature. Strength & Conditioning Journal, 38(2), 49–56. https://doi.org/10.1519/SSC.0000000000000200
Hopkins, W., Marshall, S., Batterham, A., & Hanin, J. (2009). Progressive statistics for studies in sports medicine and exercise science. Medicine & Science in Sports & Exercise, 41(1), 3–12. https://doi.org/10.1249/MSS.0b013e31818cb278
Horn, J., Nafpliotis, N., & Goldberg, D. (1994). A niched Pareto genetic algorithm for multiobjective optimization. 82–87. https://doi.org/https://doi.org/10.1109/ICEC.1994.350037
Hulin, B., Gabbett, T., Kearney, S., & Corvo, A. (2015). Physical demands of match play in successful and less-successful elite rugby league teams. International Journal of Sports Physiology and Performance, 10(6), 703–710. https://doi.org/10.1123/ijspp.2014-0080
Ingebrigtsen, J., Brochmann, M., Castagna, C., Bradley, P., Ade, J., Krustrup, P., & Holtermann, A. (2014). Relationships between field performance tests in high-level soccer players. The Journal of Strength and Conditioning Research, 28(4), 942–949. https://doi.org/10.1519/JSC.0b013e3182a1f861
John, L., Loewenstein, G., & Prelec, D. (2012). Measuring the prevalence of questionable research practices with incentives for truth telling. Psychological Science, 23(5), 524–532. https://doi.org/10.1177/0956797611430953
Johnston, K., Wattie, N., Schorer, J., & Baker, J. (2018). Talent identification in sport: A systematic review. Sports Medicine, 48(1), 97–109. https://doi.org/10.1007/s40279-017-0803-2
Johnston, R., Gibson, N., Twist, C., Gabbett, T., MacNay, S., & MacFarlane, N. (2013). Physiological responses to an intensified period of rugby league competition. The Journal of Strength and Conditioning Research, 27(3), 643–654. https://doi.org/10.1519/JSC.0b013e31825bb469
Jones, A., Kirby, B., Clark, I., Rice, H., Fulkerson, E., Wylie, L., Wilkerson, D., Vanhatalo, A., & Wilkins, B. (2021). Physiological demands of running at 2-hour marathon race pace. Journal of Applied Physiology, 130(2), 369–379. https://doi.org/10.1152/japplphysiol.00647.2020
Jones, M., West, D., Crewther, B., Cook, C., & Kilduff, L. (2015). Quantifying positional and temporal movement patterns in professional rugby union using global positioning system. European Journal of Sport Science, 15(6), 488–496. https://doi.org/10.1080/17461391.2015.1010106
Kelly, A., & Williams, C. (2020). Physical characteristics and the talent identification and development processes in male youth soccer: A narrative review. Strength & Conditioning Journal, 42(6), 15–34. https://doi.org/10.1519/ssc.0000000000000576
Kempton, T., Sirotic, A., & Coutts, A. (2017). A comparison of physical and technical performance profiles between successful and less-successful professional rugby league teams. International Journal of Sports Physiology and Performance, 12(4), 520–526. https://doi.org/10.1123/ijspp.2016-0003
Kenny, D., & Judd, C. (1986). Consequences of violating the independence assumption in analysis of variance. Psychological Bulletin, 99(3), 422–431. https://doi.org/10.1037/0033-2909.99.3.422
Kruschke, J. (2014). Doing bayesian data analysis: A tutorial with r, JAGS, and stan. Academic Press. https://doi.org/10.1016/B978-0-12-405888-0.00001-5
Kwon, S.-S., Lee, K. M., Chung, C. Y., Lee, S. Y., & Park, M. S. (2014). An introduction to the linear mixed model for orthopaedic research. JBJS Reviews, 2(12). https://doi.org/10.2106/JBJS.RVW.N.00009
Lenth, R. (2020). Emmeans: Estimated marginal means, aka least-squares means. https://CRAN.R-project.org/package=emmeans
Lievens, E., Bellinger, P., Van Vossel, K., Vancompernolle, J., Bex, T., Minahan, C., & Derave, W. (2021). Muscle typology of world-class cyclists across various disciplines and events. Medicine and Science in Sports and Exercise, 53(4), 816–824. https://doi.org/10.1249/MSS.0000000000002518
Ligges, U., & Mächler, M. (2003). Scatterplot3d - an r package for visualizing multivariate data. Journal of Statistical Software, 8(11), 1–20. http://www.jstatsoft.org
Lockie, R., Jalilvand, F., Moreno, M., Orjalo, A., Risso, F., & Nimphius, S. (2017). Yo-yo intermittent recovery test level 2 and its relationship with other typical soccer field tests in female collegiate soccer players. The Journal of Strength and Conditioning Research, 31(10), 2667–2677. https://doi.org/10.1519/JSC.0000000000001734
Lüdecke, D. (2020). sjPlot: Data visualization for statistics in social science. https://CRAN.R-project.org/package=sjPlot
Lüdecke, D., Ben-Shachar, M., Patil, I., Waggoner, P., & Makowski, D. (2021). Performance: An r package for assessment, comparison and testing of statistical models. Journal of Open Source Software, 6(60), 3139. https://doi.org/10.21105/joss.03139
Lüdecke, D., Patil, I., Ben-Shachar, M., Wiernik, B., Waggoner, P., & Makowski, D. (2021). See: An r package for visualizing statistical models. Journal of Open Source Software, 6(64), 3393. https://doi.org/10.21105/joss.03393
Maquirriain, J., Baglione, R., & Cardey, M. (2016). Male professional tennis players maintain constant serve speed and accuracy over long matches on grass courts. European Journal of Sport Science, 16(7), 845–849. https://doi.org/10.1080/17461391.2016.1156163
Mara, J., Thompson, K., Pumpa, K., & Morgan, S. (2017). The acceleration and deceleration profiles of elite female soccer players during competitive matches. Journal of Science and Medicine in Sport, 20(9), 867–872. https://doi.org/10.1016/j.jsams.2016.12.078
Marler, T., & Arora, J. (2004). Survey of multi-objective optimization methods for engineering. Structural and Multidisciplinary Optimization, 26(6), 369–395. https://doi.org/10.1007/S00158-003-0368-6
Mastroddi, F., & Gemma, S. (2013). Analysis of Pareto frontiers for multidisciplinary design optimization of aircraft. Aerospace Science and Technology, 28(1), 40–55. https://doi.org/10.1016/j.ast.2012.10.003
McCaskie, C., Young, W., Fahrner, B., & Sim, M. (2019). Association between preseason training and performance in elite Australian football. International Journal of Sports Physiology and Performance, 14(1), 68–75. https://doi.org/10.1123/ijspp.2018-0086
McElreath, R. (2018). Statistical rethinking: A bayesian course with examples in r and stan. Chapman; Hall/CRC. https://doi.org/10.1201/9781315372495
McKay, A., Stellingwerff, T., Smith, E., Martin, D., Mujika, I., Goosey-Tolfrey, V., Sheppard, J., & Burke, L. (2021). Defining training and performance caliber: A participant classification framework. International Journal of Sports Physiology and Performance, 17(2), 317–331. https://doi.org/10.1123/ijspp.2021-0451
McNeish, D. (2016). On using bayesian methods to address small sample problems. Structural Equation Modeling: A Multidisciplinary Journal, 23(5), 750–773. https://doi.org/10.1080/10705511.2016.1186549
Medicine & Science in Sports & Exercise. (2023). Information for authors. https://edmgr.ovid.com/msse/accounts/ifauth.htm
Mengersen, K., Drovandi, C., Robert, C., Pyne, D., & Gore, C. (2016). Bayesian estimation of small effects in exercise and sports science. PLoS One, 11(4), e0147311. https://doi.org/10.1371/journal.pone.0147311
Minahan, C., Newans, T., Quinn, K., Parsonage, J., Buxton, S., & Bellinger, P. (2021). Strong, fast, fit, lean, and safe: A positional comparison of physical and physiological qualities within the 2020 Australian Women’s Rugby League team. The Journal of Strength and Conditioning Research, 35(Suppl 2), S11–S19. https://doi.org/10.1519/JSC.0000000000004106
Mohr, M., Krustrup, P., & Bangsbo, J. (2003). Match performance of high-standard soccer players with special reference to development of fatigue. Journal of Sports Sciences, 21(7), 519–528. https://doi.org/10.1080/0264041031000071182
Morin, J.-B., Le Mat, Y., Osgnach, C., Barnabò, A., Pilati, A., Samozino, P., & Prampero, P. di. (2021). Individual acceleration-speed profile in-situ: A proof of concept in professional football players. Journal of Biomechanics, 123, 110524. https://doi.org/10.1016/j.jbiomech.2021.110524
Morris, T. (2000). Psychological characteristics and talent identification in soccer. Journal of Sports Sciences, 18(9), 715–726. https://doi.org/10.1080/02640410050120096
Nakai, M., & Ke, W. (2011). Review of the methods for handling missing data in longitudinal data analysis. International Journal of Mathematical Analysis, 13.
National Rugby League. (2020). Tiffany Slater honoured at NSW Her Sport Her Way awards. https://www.nrl.com/news/2020/03/05/tiffany-slater-honoured-at-nsw-her-sport-her-way-awards/
National Rugby League. (2022). Statement on NRLW expansion. https://www.nrl.com/news/2022/06/15/statement-on-nrlw-expansion/
Newans, T., Bellinger, P., Buxton, S., Quinn, K., & Minahan, C. (2021). Movement patterns and match statistics in the national rugby league women’s (NRLW) premiership. Frontiers in Sports and Active Living, 3. https://doi.org/10.3389/fspor.2021.618913
Newans, T., Bellinger, P., Dodd, K., & Minahan, C. (2019). Modelling the acceleration and deceleration profile of elite-level soccer players. International Journal of Sports Medicine, 40(5), 331–335. https://doi.org/10.1055/a-0853-7676
Newans, T., Bellinger, P., Drovandi, C., Buxton, S., & Minahan, C. (2022). The utility of mixed models in sport science: A call for further adoption in longitudinal data sets. International Journal of Sports Physiology and Performance, 17(8), 1289–1295. https://doi.org/10.1123/ijspp.2021-0496
Newans, T., Bellinger, P., & Minahan, C. (2022). The balancing act: Identifying multivariate sports performance using Pareto frontiers. Frontiers in Sports and Active Living, 4. https://doi.org/10.3389/fspor.2022.918946
Newell, J., Aitchison, T., & Grant, S. (2014). Statistics for sports and exercise science: A practical approach. Routledge. https://doi.org/10.4324/9781315847542
Nomura, S., Ogata, Y., Komaki, F., & Toda, S. (2011). Bayesian forecasting of recurrent earthquakes and predictive performance for a small sample size. Journal of Geophysical Research: Solid Earth, 116(B4). https://ui.adsabs.harvard.edu/link_gateway/2011JGRB..116.4315N/doi:10.1029/2010JB007917
Novak, A., Impellizzeri, F., Trivedi, A., Coutts, A., & McCall, A. (2021). Analysis of the worst-case scenarios in an elite football team: Towards a better understanding and application. Journal of Sports Sciences, 39(16), 1850–1859. https://doi.org/10.1080/02640414.2021.1902138
NRL.com. (2021). The broader game: NRLW games up to 70 minutes to promote fatigue factor. https://www.nrl.com/news/2021/07/08/the-broader-game-nrlw-games-up-to-70-minutes-to-promote-fatigue-factor/
Ottosson, R., Engström, P., Sjöström, D., Behrens, C., Karlsson, A., Knöös, T., & Ceberg, C. (2009). The feasibility of using pareto fronts for comparison of treatment planning systems and delivery techniques. Acta Oncologica, 48(2), 233–237. https://doi.org/10.1080/02841860802251559
Patel, A., Bracewell, P., Gazley, A., & Bracewell, B. (2017). Identifying fast bowlers likely to play test cricket based on age-group performances. International Journal of Sports Science & Coaching, 12(3), 328–338. https://doi.org/10.1177/1747954117710514
Pérez-Toledano, M. Á., Rodriguez, F., García-Rubio, J., & Ibañez, S. J. (2019). Players selection for basketball teams, through performance index rating, using multiobjective evolutionary algorithms. PLoS One, 14(9), e0221258. https://doi.org/10.1371/journal.pone.0221258
Pion, J., Lenoir, M., Vandorpe, B., & Segers, V. (2015). Talent in female gymnastics: A survival analysis based upon performance characteristics. International Journal of Sports Medicine, 94(11), 935–940. https://doi.org/10.1055/s-0035-1548887
Ploutz-Snyder, R., Fiedler, J., & Feiveson, A. (2014). Justifying small-n research in scientifically amazing settings: Challenging the notion that only big-n studies are worthwhile. Journal of Applied Physiology, 116(9), 1251–1252. https://doi.org/10.1152/japplphysiol.01335.2013
Ponsich, A., Jaimes, A. L., & Coello, C. A. C. (2012). A survey on multiobjective evolutionary algorithms for the solution of the portfolio optimization problem and other finance and economics applications. IEEE Transactions on Evolutionary Computation, 17(3), 321–344. https://doi.org/10.1109/TEVC.2012.2196800
Pyne, D., Gardner, A., Sheehan, K., & Hopkins, W. (2005). Fitness testing and career progression in AFL football. Journal of Science and Medicine in Sport, 8(3), 321–332. https://doi.org/10.1016/s1440-2440(05)80043-x
Queensland Department of Education and Training. (2023). Literacy and numeracy fact sheet. https://education.qld.gov.au/parents/Documents/factsheet-l-n.pdf
Quinn, K., Newans, T., Buxton, S., Thomson, T., Tyler, R., & Minahan, C. (2020). Movement patterns of players in the Australian Womens Rugby League team during international competition. Journal of Science and Medicine in Sport, 23(3), 315–319. https://doi.org/10.1016/j.jsams.2019.10.009
Quintana, D., & Williams, D. (2018). Bayesian alternatives for common null-hypothesis significance tests in psychiatry: A non-technical guide using JASP. BMC Psychiatry, 18(1), 178.
R Core Team. (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
Rago, V., Krustrup, P., Martín-Acero, R., Rebelo, A., & Mohr, M. (2020). Training load and submaximal heart rate testing throughout a competitive period in a top-level male football team. Journal of Sports Sciences, 38(11-12), 1408–1415. https://doi.org/10.1080/02640414.2019.1618534
Rampinini, E., Sassi, A., Morelli, A., Mazzoni, S., Fanchini, M., & Coutts, A. (2009). Repeated-sprint ability in professional and amateur soccer players. Applied Physiology, Nutrition, and Metabolism, 34(6), 1048–1054. https://doi.org/10.1139/H09-111
Richter, C., O’Reilly, M., & Delahunt, E. (2021). Machine learning in sports science: Challenges and opportunities. Sports Biomechanics, 1–7. https://doi.org/10.1080/14763141.2021.1910334
Rienhoff, R., Hopwood, M., Fischer, L., Strauss, B., Baker, J., & Schorer, J. (2013). Transfer of motor and perceptual skills from basketball to darts. Frontiers in Psychology, 4. https://doi.org/10.3389/fpsyg.2013.00593
Roocks, P. (2016). Computing Pareto frontiers and database preferences with the rPref package. The R Journal, 8(2), 393–404. https://doi.org/10.32614/RJ-2016-054
Rudsits, B., Hopkins, W., Hautier, C., & Rouffet, D. (2018). Force-velocity test on a stationary cycle ergometer: Methodological recommendations. Journal of Applied Physiology, 124(4), 831–839. https://doi.org/10.1152/japplphysiol.00719.2017
Russell, M., Sparkes, W., Northeast, J., Cook, C., Love, T., Bracken, R., & Kilduff, L. (2016). Changes in acceleration and deceleration capacity throughout professional soccer match-play. The Journal of Strength and Conditioning Research, 30(10), 2839–2844. https://doi.org/10.1519/jsc.0000000000000805
Sainani, K. (2018). The problem with "magnitude-based inference". Medicine and Science in Sports and Exercise, 50(10), 2166–2176. https://doi.org/10.1249/MSS.0000000000001645
Sainani, K., Borg, D., Caldwell, A., Butson, M., Tenan, M., Vickers, A., Vigotsky, A., Warmenhoven, J., Nguyen, R., & Lohse, K. (2021). Call to increase statistical collaboration in sports science, sport and exercise medicine and sports physiotherapy. British Journal of Sports Medicine, 55(2), 118–122. http://doi.org/10.1136/bjsports-2020-102607
Sánchez-García, M., Sánchez-Sánchez, J., Rodríguez-Fernández, A., Solano, D., & Castillo, D. (2018). Relationships between sprint ability and endurance capacity in soccer referees. Sports, 6(2), 28. https://doi.org/10.3390/sports6020028
Santos-Fernandez, E., Wu, P., & Mengersen, K. (2019). Bayesian statistics meets sports: A comprehensive review. Journal of Quantitative Analysis in Sports, 15(4), 289–312. https://doi.org/10.1186/s12888-018-1761-4
Scott, J., Hill, S., Barwood, D., & Penney, D. (2021). Physical literacy and policy alignment in sport and education in Australia. European Physical Education Review, 27(2), 328–347. https://doi.org/10.1177/1356336X20947434
Seshadri, D., Thom, M., Harlow, E., Gabbett, T., Geletka, B., Hsu, J., Drummond, C., Phelan, D., & Voos, J. (2021). Wearable technology and analytics as a complementary toolkit to optimize workload and to reduce injury burden. Frontiers in Sports and Active Living, 2. https://doi.org/10.3389/fspor.2020.630576
Singmann, H., Bolker, B., Westfall, J., Aust, F., & Ben-Shachar, M. (2020). Afex: Analysis of factorial experiments. https://CRAN.R-project.org/package=afex
Speed, H., & Andersen, M. (2000). What exercise and sport scientists don’t understand. Journal of Science and Medicine in Sport, 3(1), 84–92. https://doi.org/10.1016/S1440-2440(00)80051-1
Stølen, T., Chamari, K., Castagna, C., & Wisløff, U. (2005). Physiology of soccer: An update. Sports Medicine (Auckland, N.Z.), 35(6), 501–536. https://doi.org/10.2165/00007256-200535060-00004
Suarez-Arrones, L., Portillo, J., Pareja-Blanco, F., Villareal, E. S. de, Sánchez-Medina, L., & Munguía-Izquierdo, D. (2014). Match-play activity profile in elite women’s rugby union players. The Journal of Strength and Conditioning Research, 28(2), 452–458. https://doi.org/10.1519/jsc.0b013e3182999e2b
Tapia, M. G. C., & Coello, C. A. C. (2007). Applications of multi-objective evolutionary algorithms in economics and finance: A survey. 532–539. https://doi.org/10.1109/CEC.2007.4424516
Thornton, H., Armstrong, C., Rigby, A., Minahan, C., Johnston, R., & Duthie, G. (2020). Preparing for an Australian Football League Women’s League season. Frontiers in Sports and Active Living, 2, 216. https://doi.org/10.3389/fspor.2020.608939
Thornton, H., Delaney, J., Duthie, G., & Dascombe, B. (2019). Developing athlete monitoring systems in team sports: Data analysis and visualization. International Journal of Sports Physiology and Performance, 14(6), 698–705. https://doi.org/10.1123/ijspp.2018-0169
Thornton, H., Nelson, A., Delaney, J., Serpiello, F., & Duthie, G. (2019). Interunit reliability and effect of data-processing methods of global positioning systems. International Journal of Sports Physiology and Performance, 14(4), 432–438. https://doi.org/10.1123/ijspp.2018-0273
Tierney, P., Blake, C., & Delahunt, E. (2021). Physical characteristics of different professional rugby union competition levels. Journal of Science and Medicine in Sport, 24(12), 1267–1271. https://doi.org/10.1016/j.jsams.2021.05.009
Till, K., Cobley, S., Morley, D., O’hara, J., Chapman, C., & Cooke, C. (2016). The influence of age, playing position, anthropometry and fitness on career attainment outcomes in rugby league. Journal of Sports Sciences, 34(13), 1240–1245. https://doi.org/10.1080/02640414.2015.1105380
Turner, A., Jones, B., Stewart, P., Bishop, C., Parmar, N., Chavda, S., & Read, P. (2019). Total score of athleticism: Holistic athlete profiling to enhance decision-making. Strength & Conditioning Journal, 41(6), 91–101. https://doi.org/10.1519/SSC.0000000000000506
Vaeyens, R., Lenoir, M., Williams, M., & Philippaerts, R. (2008). Talent identification and development programmes in sport. Sports Medicine, 38(9), 703–714. https://doi.org/10.2165/00007256-200838090-00001
Varley, M., Elias, G., & Aughey, R. (2012). Current match-analysis techniques underestimation of intense periods of high-velocity running. International Journal of Sports Physiology and Performance, 7(2), 183–185. https://doi.org/10.1123/ijspp.7.2.183
Vigh-Larsen, J., Dalgas, U., & Andersen, T. (2018). Position-specific acceleration and deceleration profiles in elite youth and senior soccer players. The Journal of Strength and Conditioning Research, 32(4), 1114–1122. https://doi.org/10.1519/JSC.0000000000001918
Waldron, M., Highton, J., Daniels, M., & Twist, C. (2013). Preliminary evidence of transient fatigue and pacing during interchanges in rugby league. International Journal of Sports Physiology and Performance, 8(2), 157–164. https://doi.org/10.1123/ijspp.8.2.157
Weaving, D., Young, D., Riboli, A., Jones, B., & Coratella, G. (2022). The maximal intensity period: Rationalising its use in team sports practice. Sports Medicine-Open, 8(1), 1–9. https:doi.org/10.1186/s40798-022-00519-7
Wells, G., Elmi, M., & Thomas, S. (2009). Physiological correlates of golf performance. The Journal of Strength and Conditioning Research, 23(3), 741–750. https://doi.org/10.1519/JSC.0b013e3181a07970
Welsh, A., & Knight, E. (2015). Magnitude-based inference: A statistical review. Medicine and Science in Sports and Exercise, 47(4), 874–884. https://doi.org/10.1249/MSS.0000000000000451
Whitehead, M. (2010). Physical literacy (pp. 8–19). Routledge. https://doi.org/10.4324/9780203881903
Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. https://ggplot2.tidyverse.org
Wickham, H. (2021). Tidyr: Tidy messy data. https://CRAN.R-project.org/package=tidyr
Wickham, H., François, R., Henry, L., & Müller, K. (2021). Dplyr: A grammar of data manipulation. https://CRAN.R-project.org/package=dplyr
Yarkoni, T. (2019). The generalizability crisis. Behavioral and Brain Sciences, 1–37. https://doi.org/10.1017/S0140525X20001685
Zondervan-Zwijnenburg, M., Peeters, M., Depaoli, S., & Van de Schoot, R. (2017). Where do priors come from? Applying guidelines to construct informative priors in small sample research. Research in Human Development, 14(4), 305–320. https://doi.org/10.1080/15427609.2017.1370966